A047546 Numbers that are congruent to {2, 3, 4, 7} mod 8.
2, 3, 4, 7, 10, 11, 12, 15, 18, 19, 20, 23, 26, 27, 28, 31, 34, 35, 36, 39, 42, 43, 44, 47, 50, 51, 52, 55, 58, 59, 60, 63, 66, 67, 68, 71, 74, 75, 76, 79, 82, 83, 84, 87, 90, 91, 92, 95, 98, 99, 100, 103, 106, 107, 108, 111, 114, 115, 116, 119, 122, 123
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Programs
-
Maple
A047546:=n->(4*n-2+I^(1-n)+I^(n-1))/2: seq(A047546(n), n=1..100); # Wesley Ivan Hurt, May 20 2016
-
Mathematica
Table[(4n-2+I^(1-n)+I^(n-1))/2, {n, 80}] (* Wesley Ivan Hurt, May 20 2016 *)
-
PARI
a(n)=(n-1)\4*8+[7,2,3,4][n%4+1] \\ Charles R Greathouse IV, Jun 11 2015
-
Sage
[lucas_number1(n,0,1)+2*n-1 for n in range(1,56)] # Zerinvary Lajos, Jul 06 2008
Formula
a(n) = A056594(n)+2*n-1. - Zerinvary Lajos, Jul 06 2008
a(n) = A047404(n)+1. - Zerinvary Lajos, Jul 06 2008
G.f.: x*(2-x+2*x^2+x^3) / ((1+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 20 2016: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>4.
a(n) = (4*n-2+I^(1-n)+I^(n-1))/2 where I=sqrt(-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi/16 - 3*log(2)/8. - Amiram Eldar, Dec 25 2021
Extensions
More terms from Wesley Ivan Hurt, May 20 2016