A047549 Numbers that are congruent to {0, 1, 2, 3, 4, 7} mod 8.
0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 87, 88
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Programs
-
Magma
[n : n in [0..100] | n mod 8 in [0..4] cat [7]]; // Wesley Ivan Hurt, May 29 2016
-
Maple
A047549:=n->(24*n-33+3*cos(n*Pi)+4*sqrt(3)*cos((1-4*n)*Pi/6)+12*sin((1+ 2*n)*Pi/6))/18: seq(A047549(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
-
Mathematica
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 7, 8}, 50] (* G. C. Greubel, May 29 2016 *)
Formula
From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
G.f.: x^2*(x^5 + 3*x^4 + x^3 + x^2 + x + 1)/(x^7 - x^6 - x + 1). (End)
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = (24*n-33+3*cos(n*Pi)+4*sqrt(3)*cos((1-4*n)*Pi/6)+12*sin((1+
2*n)*Pi/6))/18.
a(6k) = 8k-1, a(6k-1) = 8k-4, a(6k-2) = 8k-5, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = (14-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8 - (2-sqrt(2))*Pi/16. - Amiram Eldar, Dec 26 2021