cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047551 Numbers that are congruent to {0, 1, 6, 7} mod 8.

Original entry on oeis.org

0, 1, 6, 7, 8, 9, 14, 15, 16, 17, 22, 23, 24, 25, 30, 31, 32, 33, 38, 39, 40, 41, 46, 47, 48, 49, 54, 55, 56, 57, 62, 63, 64, 65, 70, 71, 72, 73, 78, 79, 80, 81, 86, 87, 88, 89, 94, 95, 96, 97, 102, 103, 104, 105, 110, 111, 112, 113, 118, 119, 120, 121, 126
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=6 and b(k)=2^(k+1) for k>1. - Philippe Deléham, Oct 19 2011
a(n) = 2n - A010873(n+1). - Wesley Ivan Hurt, Jul 07 2013
G.f.: x^2*(1+5*x+x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Jul 14 2013
From Wesley Ivan Hurt, May 29 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (4*n-3-i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n)/2 where i=sqrt(-1).
a(2k) = A047522(k), a(2k-1) = A047451(k). (End)
E.g.f.: 1 - sin(x) + cos(x) + (2*x - 1)*sinh(x) + 2*(x - 1)*cosh(x). - Ilya Gutkovskiy, May 29 2016
Sum_{n>=2} (-1)^n/a(n) = Pi/16 + (5-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4. - Amiram Eldar, Dec 20 2021