A047556 Numbers that are congruent to {3, 6, 7} mod 8.
3, 6, 7, 11, 14, 15, 19, 22, 23, 27, 30, 31, 35, 38, 39, 43, 46, 47, 51, 54, 55, 59, 62, 63, 67, 70, 71, 75, 78, 79, 83, 86, 87, 91, 94, 95, 99, 102, 103, 107, 110, 111, 115, 118, 119, 123, 126, 127, 131, 134, 135, 139, 142, 143, 147, 150, 151, 155, 158, 159
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [3, 6, 7]]; // Wesley Ivan Hurt, Jun 10 2016
-
Maple
A047556:=n->(24*n-9*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9: seq(A047556(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{3, 6, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 10 2016 *) LinearRecurrence[{1,0,1,-1},{3,6,7,11},60] (* Harvey P. Dale, Sep 02 2024 *)
Formula
G.f.: x*(1+x)*(x^2+3) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-9*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-2, a(3k-2) = 8k-5. (End)