A047563 Numbers that are congruent to {0, 3, 4, 5, 6, 7} mod 8.
0, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 64, 67, 68, 69, 70, 71, 72, 75, 76, 77, 78, 79, 80, 83, 84, 85, 86, 87
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Crossrefs
Cf. A047571.
Programs
-
Magma
[n : n in [0..100] | n mod 8 in [0] cat [3..7]]; // Wesley Ivan Hurt, May 29 2016
-
Maple
A047563:=n->(24*n-9+3*cos(n*Pi)-12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/18: seq(A047563(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
-
Mathematica
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 3, 4, 5, 6, 7, 8}, 50] (* G. C. Greubel, May 29 2016 *)
Formula
From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
G.f.: x^2*(x^5 + x^4 + x^3 + x^2 + x + 3)/(x^7 - x^6 - x + 1). (End)
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = (24*n-9+3*cos(n*Pi)-12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/18.
a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-3, a(6k-3) = 8k-4, a(6k-4) = 8k-5, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = 7*log(2)/8 + sqrt(2)*log(3-2*sqrt(2))/16 - sqrt(2)*Pi/16. - Amiram Eldar, Dec 27 2021