A047582 Numbers that are congruent to {3, 5, 6, 7} mod 8.
3, 5, 6, 7, 11, 13, 14, 15, 19, 21, 22, 23, 27, 29, 30, 31, 35, 37, 38, 39, 43, 45, 46, 47, 51, 53, 54, 55, 59, 61, 62, 63, 67, 69, 70, 71, 75, 77, 78, 79, 83, 85, 86, 87, 91, 93, 94, 95, 99, 101, 102, 103, 107, 109, 110, 111, 115, 117, 118, 119, 123, 125
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [3, 5, 6, 7]]; // Wesley Ivan Hurt, May 29 2016
-
Maple
A047582:=n->(8*n+1-I^(2*n)-(2-I)*I^(-n)-(2+I)*I^n)/4: seq(A047582(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
-
Mathematica
Table[(8n+1-I^(2n)-(2-I)*I^(-n)-(2+I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 29 2016 *)
Formula
From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x*(3+2*x+x^2+x^3+x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n+1-i^(2*n)-(2-i)*i^(-n)-(2+i)*i^n)/4 where i=sqrt(-1).
E.g.f.: (2 + sin(x) - 2*cos(x) + sinh(x) + 4*x*exp(x))/2. - Ilya Gutkovskiy, May 30 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (3*sqrt(2)-2)*Pi/16 - log(2)/8 + sqrt(2)*log(3-2*sqrt(2))/16. - Amiram Eldar, Dec 26 2021