cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047610 Positive integers that are congruent to {1, 4, 5} mod 8.

Original entry on oeis.org

1, 4, 5, 9, 12, 13, 17, 20, 21, 25, 28, 29, 33, 36, 37, 41, 44, 45, 49, 52, 53, 57, 60, 61, 65, 68, 69, 73, 76, 77, 81, 84, 85, 89, 92, 93, 97, 100, 101, 105, 108, 109, 113, 116, 117, 121, 124, 125, 129, 132, 133, 137, 140, 141, 145, 148, 149, 153, 156, 157
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..160] | n mod 8 in [1,4,5]]; // Vincenzo Librandi, May 07 2015
  • Maple
    seq(op([8*i+1,8*i+4,8*i+5]),i=0..100); # Robert Israel, May 04 2015
  • Mathematica
    a[1] := 1; a[2] := 4; a[3] := 5; a[n_] := a[n - 3] + 8; Table[a[n], {n, 10}] (* L. Edson Jeffery, May 04 2015 *)
    Select[Range[0, 200], MemberQ[{1, 4, 5}, Mod[#, 8]] &] (* Vincenzo Librandi, May 07 2015 *)
    LinearRecurrence[{1,0,1,-1},{1,4,5,9},60] (* Harvey P. Dale, Nov 21 2015 *)
  • PARI
    is(n)=n%8==1||n%8>>1==2 \\ Charles R Greathouse IV, May 04 2015
    

Formula

a(n) = a(n-3) + 8, n > 3, with initial conditions a(1) = 1, a(2) = 4, a(3) = 5. - L. Edson Jeffery, May 04 2015
G.f.: x*(1+3*x)*(1+x^2)/(1-x-x^3+x^4). - Robert Israel, May 04 2015
A047610 = A016813 union A017113\{0}. - L. Edson Jeffery, May 06 2015