A047661 Row 5 of square array defined in A047662.
5, 30, 115, 340, 841, 1826, 3591, 6536, 11181, 18182, 28347, 42652, 62257, 88522, 123023, 167568, 224213, 295278, 383363, 491364, 622489, 780274, 968599, 1191704, 1454205, 1761110, 2117835, 2530220, 3004545, 3547546, 4166431, 4868896, 5663141, 6557886, 7562387
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Cf. A047662.
Programs
-
Mathematica
Table[(n/15)(2n^4+5n^3+20n^2+25n+23),{n,30}] (* Harvey P. Dale, Nov 25 2022 *)
-
PARI
my(x='x+O('x^35)); Vec(x*(5+10*x^2+x^4)/(1-x)^6) \\ Elmo R. Oliveira, Sep 02 2025
Formula
a(n) = (n/15)*(2*n^4 + 5*n^3 + 20*n^2 + 25*n + 23). [Corrected by Sean A. Irvine, May 13 2021]
From Elmo R. Oliveira, Sep 02 2025: (Start)
G.f.: x*(5 + 10*x^2 + x^4)/(x-1)^6.
E.g.f.: x*(5 + 5*x + x^2)*(15 + 15*x + 2*x^2)*exp(x)/15.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 6. (End)
Extensions
More terms from Elmo R. Oliveira, Sep 02 2025