A047663 Row 6 of square array defined in A047662.
6, 42, 188, 644, 1826, 4494, 9912, 20040, 37758, 67122, 113652, 184652, 289562, 440342, 651888, 942480, 1334262, 1853754, 2532396, 3407124, 4520978, 5923742, 7672616, 9832920, 12478830, 15694146, 19573092, 24221148, 29755914, 36308006
Offset: 1
Keywords
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
Programs
-
GAP
List([1..35],n->n/45*(2*n^5+6*n^4+35*n^3+60*n^2+98*n+69)); # Muniru A Asiru, Nov 21 2018
-
Maple
seq(coeff(series(x*(-6*x^4-20*x^2-6)/(x-1)^7,x,n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Nov 21 2018
-
Mathematica
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {6, 42, 188, 644, 1826, 4494, 9912 }, 50] (* or *) CoefficientList[Series[-((2 (3 + 10 x^2 + 3 x^4))/(-1 + x)^7), {x, 0, 50}], x] (* Stefano Spezia, Nov 01 2018 *)
Formula
a(n) = (n/45) * (2n^5 + 6n^4 + 35n^3 + 60n^2 + 98n + 69).
From Chai Wah Wu, Nov 01 2018: (Start)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 7.
G.f.: x*(-6*x^4 - 20*x^2 - 6)/(x - 1)^7. (End)