cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047663 Row 6 of square array defined in A047662.

Original entry on oeis.org

6, 42, 188, 644, 1826, 4494, 9912, 20040, 37758, 67122, 113652, 184652, 289562, 440342, 651888, 942480, 1334262, 1853754, 2532396, 3407124, 4520978, 5923742, 7672616, 9832920, 12478830, 15694146, 19573092, 24221148, 29755914, 36308006
Offset: 1

Views

Author

Keywords

Programs

  • GAP
    List([1..35],n->n/45*(2*n^5+6*n^4+35*n^3+60*n^2+98*n+69)); # Muniru A Asiru, Nov 21 2018
  • Maple
    seq(coeff(series(x*(-6*x^4-20*x^2-6)/(x-1)^7,x,n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Nov 21 2018
  • Mathematica
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {6, 42, 188, 644, 1826, 4494, 9912 }, 50] (* or *)
    CoefficientList[Series[-((2 (3 + 10 x^2 + 3 x^4))/(-1 + x)^7), {x, 0, 50}], x] (* Stefano Spezia, Nov 01 2018 *)

Formula

a(n) = (n/45) * (2n^5 + 6n^4 + 35n^3 + 60n^2 + 98n + 69).
From Chai Wah Wu, Nov 01 2018: (Start)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 7.
G.f.: x*(-6*x^4 - 20*x^2 - 6)/(x - 1)^7. (End)