A047775 Number of dissectable polyhedra with n tetrahedral cells and symmetry of type B.
0, 0, 0, 0, 2, 5, 11, 25, 66, 131, 349, 708, 1911, 3856, 10604, 21597, 59961, 123266, 345060, 715198, 2015416, 4206926, 11919257, 25032840, 71246129, 150413234, 429750208, 911379241, 2612614298, 5562367173, 15991792731, 34164355260
Offset: 1
Keywords
Links
- L. W. Beineke and R. E. Pippert, Enumerating dissectable polyhedra by their automorphism groups, Canad. J. Math., 26 (1974), 50-67.
- S. J. Cyvin, Jianji Wang, J. Brunvoll, Shiming Cao, Ying Li, B. N. Cyvin, and Yugang Wang, Staggered conformers of alkanes: complete solution of the enumeration problem, J. Molec. Struct. 413-414 (1997), 227-239.
- Robert A. Russell, Mathematica Graphics3D program for A047775 examples
Crossrefs
Programs
-
Mathematica
Table[If[n<5,0,If[OddQ[n],2Binomial[(3n-1)/2,(n-1)/2]/(n+1)+If[1==Mod[n,4],2Binomial[3(n-1)/4,(n-1)/4]/(n+1),0],Binomial[3n/2,n/2]/(n+1)-If[OddQ[n/2],4Binomial[(3n-2)/4,(n-2)/4],2Binomial[3n/4,n/4]]/(n+2)]/2+If[2==Mod[n,6],3Binomial[(n-2)/2,(n-2)/6]/(n+1)+If[2==Mod[n,12],6Binomial[(n-2)/4,(n-2)/12],12Binomial[n/4-1,(n-8)/12]]/(n+4),0]/2-Switch[Mod[n,4],1,4Binomial[(3n+1)/4,(n-1)/4],3,2Binomial[(3n+3)/4,(n+1)/4],,0]/(n+3)-Switch[Mod[n,6],1,3Binomial[(n-1)/2,(n-1)/6]/(n+2),2,6Binomial[n/2,(n-2)/6]/(n+4),4,6Binomial[(n-2)/2,(n-4)/6]/(n+2),,0]-If[5==Mod[n,6],3Binomial[(n+1)/2,(n+1)/6]/(n+4)-Switch[Mod[n,24],5,12Binomial[(n-5)/8,(n-5)/24],17,24Binomial[(n-9)/8,(n-17)/24],,0]/(n+7),0]],{n,50}] (* _Robert A. Russell, Mar 29 2024 *)
Formula
a(n) = (1/2)*(A047749(n) - 2*A047773(n) - 2*A047760(n) - A047753(n) - A047751(n) - A047764(n) - A047765(n)).
G.f.: (2 - G(z^4) - G(z^6))/z + (G(z^2) + z*G(z^2)^2 - G(z^4) + z*G(z^4) - z^2*G(z^4)^2 + z^2*G(z^6) + z^2*G(z^12) + z^8*G(z^12)^2) / 2 + z - z*G(z^4)^2 - z*G(z^6) - z^2*G(z^6)^2 - z^4*G(z^6)^2 + z^5*G(z^24) + z^17*G(z^24)^2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 29 2024
Comments