cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047789 Denominators of Glaisher's I-numbers.

Original entry on oeis.org

2, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 81, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1
Offset: 0

Views

Author

Keywords

Examples

			1/2, 1/3, 1, 7, 809/9, 1847, 55601, 6921461/3,...
		

Crossrefs

Programs

  • Maple
    f:= n -> 3^padic:-ordp(2*n+1,3):
    f(0):= 2:
    map(f, [$0..200]); # Robert Israel, Aug 14 2018
  • Mathematica
    a[0] = 2; a[n_] := 3^IntegerExponent[2n+1, 3];
    Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Feb 27 2019 *)
    a[0]:=2; a[n_]:=Denominator[FunctionExpand[(PolyGamma[2*n, 1/3] + (3^(2*n+1)-1)*(2*n)!*Zeta[2*n+1]/2)*Sqrt[3]/(-2^(2*n)*Pi^(2*n+1))]]; Table[a[n], {n,0,100}] (* Detlef Meya, Sep 28 2024 *)
  • PARI
    a(n)=if(n<1,2*(n==0),3^valuation(2*n+1,3)) /* Michael Somos, Feb 26 2004 */
    
  • PARI
    a(n)=if(n<1,2*(n==0),n*=2;denominator(n!*polcoeff(3/(2+4*cos(x+O(x^n))),n))) /* Michael Somos, Feb 26 2004 */

Formula

From Robert Israel, Aug 14 2018: (Start)
For n >= 1, a(3*n) = a(3*n+2) = 1 and a(3*n+1) = 3*a(n).
G.f. g(x) satisfies g(x) = 3*x*g(x^3) + 2 - 3*x + (x^2+x^3)/(1-x^3). (End)
G.f.: 1 + Sum_{k>=0} (3^k*x^((5*3^k - 1)/2) + 3^k*x^((3^k - 1)/2))/(1 - x^(3^(k + 1))). - Miles Wilson, Dec 01 2024