cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047790 a(n) = Fibonacci(2*n)-2^n+1.

Original entry on oeis.org

0, 0, 0, 1, 6, 24, 81, 250, 732, 2073, 5742, 15664, 42273, 113202, 301428, 799273, 2112774, 5571816, 14668209, 38563882, 101285580, 265817145, 697214430, 1827923296, 4790749761, 12552714594, 32884171236, 86133353545, 225582998262, 590749858968, 1546935014097
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    with(combstruct): SeqSeqSeqL := [T, {T=Sequence(S, card > 1), S=Sequence(U, card > 1), U=Sequence(Z, card >0)}, unlabeled]: seq(count(SeqSeqSeqL, size=j+1), j=0..29); # Zerinvary Lajos, Apr 16 2009
  • Mathematica
    Table[Fibonacci[2n]-2^n+1,{n,0,30}] (* or *) LinearRecurrence[ {6,-12,9,-2},{0,0,0,1},30] (* Harvey P. Dale, Jan 19 2012 *)
    CoefficientList[Series[x^3/(1 - 6 x + 12 x^2 - 9 x^3 + 2 x^4), {x, 0, 30}], x] (* Benedict W. J. Irwin, Nov 02 2016 *)
  • PARI
    concat(vector(3), Vec(x^3/(1-6*x+12*x^2-9*x^3+2*x^4) + O(x^40))) \\ Colin Barker, Nov 02 2016
  • Sage
    [lucas_number1(n,3,1)-lucas_number1(n,3,2) for n in range(0,30)] # Zerinvary Lajos, Jul 06 2008
    

Formula

a(0)=0, a(1)=0, a(2)=0, a(3)=1, a(n)=6*a(n-1)-12*a(n-2)+ 9*a(n-3)- 2*a(n-4). - Harvey P. Dale, Jan 19 2012
G.f.: x^3/(1 - 6*x + 12*x^2 - 9*x^3 + 2*x^4). - Benedict W. J. Irwin, Nov 02 2016
a(n) = (1-2^n-((3-sqrt(5))/2)^n/sqrt(5)+((3+sqrt(5))/2)^n/sqrt(5)). - Colin Barker, Nov 02 2016