cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047800 Number of different values of i^2 + j^2 for i,j in [0, n].

Original entry on oeis.org

1, 3, 6, 10, 15, 20, 27, 34, 42, 51, 61, 71, 83, 94, 106, 120, 135, 148, 165, 180, 198, 216, 235, 252, 273, 294, 315, 337, 360, 382, 408, 431, 457, 484, 508, 536, 567, 595, 624, 653, 687, 715, 749, 781, 813, 850, 884, 919, 957, 993, 1031, 1069, 1108, 1142
Offset: 0

Views

Author

Keywords

Comments

a(n-1) is the number of distinct distances on an n X n pegboard. What is its asymptotic growth? Can it be efficiently computed for large n? - Charles R Greathouse IV, Jun 13 2013
Conjecture (after Landau and Erdős): a(n) ~ c * n^2 / sqrt(log(n)), where c = 0.79... . - Vaclav Kotesovec, Mar 10 2016

Crossrefs

Programs

  • Haskell
    import Data.List (nub)
    a047800 n = length $ nub [i^2 + j^2 | i <- [0..n], j <- [i..n]]
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Mathematica
    Table[ Length@Union[ Flatten[ Table[ i^2+j^2, {i, 0, n}, {j, 0, n} ] ] ], {n, 0, 49} ]
    nmax = 100; sq = Table[i^2 + j^2, {i, 0, nmax}, {j, 0, nmax}]; Table[Length@Union[Flatten[Table[Take[sq[[j]], n + 1], {j, 1, n + 1}]]], {n, 0, nmax}] (* Vaclav Kotesovec, Mar 09 2016 *)
  • PARI
    a(n) = n++; #vecsort(vector(n^2, i, ((i-1)\n)^2+((i-1)%n)^2), , 8) \\ Charles R Greathouse IV, Jun 13 2013; edited by Michel Marcus, Jul 06 2025
    
  • PARI
    a(n) = #setbinop((i,j)->i^2+j^2, [0..n]); \\ Michel Marcus, Jul 07 2025
    
  • Python
    def A047800(n): return len(set(i**2+j**2 for i in range(n+1) for j in range(i+1))) # Chai Wah Wu, Jul 07 2025