cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047848 Array A read by diagonals; n-th difference of (A(k,n), A(k,n-1),..., A(k,0)) is (k+2)^(n-1), for n=1,2,3,...; k=0,1,2,...

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 14, 6, 2, 1, 41, 22, 7, 2, 1, 122, 86, 32, 8, 2, 1, 365, 342, 157, 44, 9, 2, 1, 1094, 1366, 782, 260, 58, 10, 2, 1, 3281, 5462, 3907, 1556, 401, 74, 11, 2, 1, 9842, 21846, 19532, 9332, 2802, 586, 92, 12, 2, 1, 29525, 87382, 97657, 55988, 19609, 4682, 821, 112, 13, 2, 1
Offset: 0

Views

Author

Keywords

Examples

			Array, A(n, k), begins as:
  1, 2,  5,  14,   41, ... = A007051.
  1, 2,  6,  22,   86, ... = A047849.
  1, 2,  7,  32,  157, ... = A047850.
  1, 2,  8,  44,  260, ... = A047851.
  1, 2,  9,  58,  401, ... = A047852.
  1, 2, 10,  74,  586, ... = A047853.
  1, 2, 11,  92,  821, ... = A047854.
  1, 2, 12, 112, 1112, ... = A047855.
  1, 2, 13, 134, 1465, ... = A047856.
  1, 2, 14, 158, 1886, ... = A196791.
  1, 2, 15, 184, 2381, ... = A196792.
Downward antidiagonals, T(n, k), begins as:
      1;
      2,     1;
      5,     2,     1;
     14,     6,     2,     1;
     41,    22,     7,     2,     1;
    122,    86,    32,     8,     2,    1;
    365,   342,   157,    44,     9,    2,   1;
   1094,  1366,   782,   260,    58,   10,   2,   1;
   3281,  5462,  3907,  1556,   401,   74,  11,   2,  1;
   9842, 21846, 19532,  9332,  2802,  586,  92,  12,  2, 1;
  29525, 87382, 97657, 55988, 19609, 4682, 821, 112, 13, 2, 1;
		

Crossrefs

Cf. A047857 (row sums), A196793 (main diagonal).

Programs

  • Magma
    A:= func< n,k | ((n+3)^k +n+1)/(n+2) >; // array A047848
    [A(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 11 2025
    
  • Mathematica
    A[n_, k_]:= ((n+3)^k +n+1)/(n+2);
    A047848[n_, k_]:= A[k,n-k];
    Table[A047848[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 11 2025 *)
  • Python
    def A(n,k): return (pow(n+3,k) +n+1)//(n+2) # array A047848
    print(flatten([[A(k,n-k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 11 2025

Formula

A(n, k) = ((n+3)^k + n + 1)/(n+2). - Ralf Stephan, Feb 14 2004
From G. C. Greubel, Jan 11 2025: (Start)
T(n, k) = ((k+3)^(n-k) + k + 1)/(k+2) (antidiagonal triangle).
T(n, n) = A196793(n).
Sum_{k=0..n} T(n, k) = A047857(n). (End)