A133494
Diagonal of the array of iterated differences of A047848.
Original entry on oeis.org
1, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987, 22876792454961, 68630377364883
Offset: 0
From _Gus Wiseman_, Jul 15 2020: (Start)
The a(0) = 1 through a(3) = 9 ways to choose a composition of each part of a composition:
() (1) (2) (3)
(1,1) (1,2)
(1),(1) (2,1)
(1,1,1)
(1),(2)
(2),(1)
(1),(1,1)
(1,1),(1)
(1),(1),(1)
(End)
Splittings of partitions are
A323583.
Multiset partitions of partitions are
A001970.
Partitions of each part of a partition are
A063834.
Compositions of each part of a partition are
A075900.
Strict partitions of each part of a strict partition are
A279785.
Compositions of each part of a strict partition are
A304961.
Strict compositions of each part of a composition are
A307068.
Compositions of each part of a strict composition are
A336127.
-
[n eq 0 select 1 else 3^(n-1): n in [0..30]]; // G. C. Greubel, Nov 20 2023
-
a:= n-> ceil(3^(n-1)):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 26 2020
-
CoefficientList[Series[(1 - 2 x)/(1 - 3 x), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 21 2011 *)
Join[{1}, 3^(Range[0, 30])] (* G. C. Greubel, Nov 20 2023 *)
-
a(n)=max(1,3^(n-1)) \\ Charles R Greathouse IV, Jul 07 2011
-
Vec((1-2*x)/(1-3*x) + O(x^100)) \\ Altug Alkan, Oct 30 2015
-
[(3^n + 2*int(n==0))//3 for n in range(31)] # G. C. Greubel, Nov 20 2023
Original entry on oeis.org
1, 2, 12, 112, 1112, 11112, 111112, 1111112, 11111112, 111111112, 1111111112, 11111111112, 111111111112, 1111111111112, 11111111111112, 111111111111112, 1111111111111112, 11111111111111112, 111111111111111112, 1111111111111111112, 11111111111111111112, 111111111111111111112
Offset: 0
-
[(10^n + 8)/9: n in [0..40]]; // G. C. Greubel, Jan 11 2025
-
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=10*a[n-1]+1 od: seq(a[n]+1, n=0..18); # Zerinvary Lajos, Mar 20 2008
-
Join[{1}, Table[FromDigits[PadLeft[{2}, n, 1]], {n, 30}]] (* Harvey P. Dale, Apr 17 2013 *)
(10^Range[0, 29] + 8)/9 (* Alonso del Arte, Apr 12 2020 *)
-
a(n)=if(n==0,1,if(n==1,2,11*a(n-1)-10*a(n-2)))
for(i=0,10,print1(a(i),",")) \\ Lambert Klasen, Jan 28 2005
-
def A047855(n): return (pow(10,n) +8)//9
print([A047855(n) for n in range(41)]) # G. C. Greubel, Jan 11 2025
-
[gaussian_binomial(n,1,10)+1 for n in range(17)] # Zerinvary Lajos, May 29 2009
-
(List.fill(20)(10: BigInt)).scanLeft(1: BigInt)( * ).map(n => (n + 8)/9) // Alonso del Arte, Apr 12 2020
Original entry on oeis.org
1, 2, 8, 44, 260, 1556, 9332, 55988, 335924, 2015540, 12093236, 72559412, 435356468, 2612138804, 15672832820, 94036996916, 564221981492, 3385331888948, 20311991333684, 121871948002100, 731231688012596, 4387390128075572, 26324340768453428, 157946044610720564, 947676267664323380
Offset: 0
Original entry on oeis.org
1, 2, 10, 74, 586, 4682, 37450, 299594, 2396746, 19173962, 153391690, 1227133514, 9817068106, 78536544842, 628292358730, 5026338869834, 40210710958666, 321685687669322, 2573485501354570, 20587884010836554, 164703072086692426, 1317624576693539402, 10540996613548315210
Offset: 0
-
[(8^n +6)/7: n in [0..40]]; // G. C. Greubel, Jan 12 2025
-
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=8*a[n-1]+1 od: seq(a[n]+1, n=0..18); # Zerinvary Lajos, Mar 20 2008
-
LinearRecurrence[{9, -8}, {1, 2}, 30] (* Harvey P. Dale, Dec 11 2016 *)
(8^Range[0,40] +6)/7 (* G. C. Greubel, Jan 12 2025 *)
-
def A047853(n): return (pow(8,n) +6)//7
print([A047853(n) for n in range(41)]) # G. C. Greubel, Jan 12 2025
Original entry on oeis.org
1, 2, 11, 92, 821, 7382, 66431, 597872, 5380841, 48427562, 435848051, 3922632452, 35303692061, 317733228542, 2859599056871, 25736391511832, 231627523606481, 2084647712458322, 18761829412124891, 168856464709124012, 1519708182382116101, 13677373641439044902, 123096362772951404111
Offset: 0
-
[(9^n +7)/8: n in [0..40]]; // G. C. Greubel, Jan 12 2025
-
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=9*a[n-1]+1 od: seq(a[n]+1, n=0..17); # Zerinvary Lajos, Mar 20 2008
-
a = {1}; ZZ = 1; Do[ZZ = ZZ + 3^(2x); AppendTo[a, ZZ], {x,0,40}]; a (* Zerinvary Lajos, Apr 03 2007 *)
(9^Range[0,40] +7)/8 (* G. C. Greubel, Jan 12 2025 *)
-
def A047854(n): return (pow(9,n) +7)//8
print([A047854(n) for n in range(41)]) # G. C. Greubel, Jan 12 2025
Original entry on oeis.org
1, 2, 9, 58, 401, 2802, 19609, 137258, 960801, 6725602, 47079209, 329554458, 2306881201, 16148168402, 113037178809, 791260251658, 5538821761601, 38771752331202, 271402266318409, 1899815864228858, 13298711049602001, 93090977347214002, 651636841430498009, 4561457890013486058
Offset: 0
Original entry on oeis.org
1, 2, 13, 134, 1465, 16106, 177157, 1948718, 21435889, 235794770, 2593742461, 28531167062, 313842837673, 3452271214394, 37974983358325, 417724816941566, 4594972986357217, 50544702849929378, 555991731349223149, 6115909044841454630, 67274999493256000921, 740024994425816010122
Offset: 0
-
[(11^n +9)/10: n in [0..40]]; // G. C. Greubel, Jan 12 2025
-
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=11*a[n-1]+1 od: seq(a[n]+1, n=0..16); # Zerinvary Lajos, Mar 20 2008
-
(11^Range[0,40] +9)/10 (* G. C. Greubel, Jan 12 2025 *)
-
def A047856(n): return (pow(11, n) + 9)//10
print([A047856(n) for n in range(41)]) # G. C. Greubel, Jan 12 2025
A047857
a(n) = Sum_{k=0..n} A047848(k, n-k).
Original entry on oeis.org
1, 3, 8, 23, 73, 251, 920, 3573, 14695, 64047, 295792, 1445659, 7460349, 40539363, 231303192, 1381924345, 8623569739, 56078184471, 379232618512, 2662012084719, 19362915524849, 145719545817995, 1133022996552664, 9090156893772893, 75161929706243087, 639793220810832639
Offset: 0
-
A047857:= func< n | n+1 + (&+[((k+1)^(n-k+2) -1)/k: k in [2..n+2]]) >;
[A047857(n): n in [0..30]]; // G. C. Greubel, Jan 17 2025
-
Table[Sum[((k+3)^(n-k) +k+1)/(k+2), {k,0,n}], {n,0,25}] (* Vaclav Kotesovec, May 23 2021 *)
-
def A047857(n): return n+1 +sum((pow(k+1, n-k+2) -1)//k for k in range(2,n+3))
print([A047857(n) for n in range(31)]) # G. C. Greubel, Jan 17 2025
Original entry on oeis.org
1, 2, 14, 158, 1886, 22622, 271454, 3257438, 39089246, 469070942, 5628851294, 67546215518, 810554586206, 9726655034462, 116719860413534, 1400638324962398, 16807659899548766, 201691918794585182, 2420303025535022174, 29043636306420266078, 348523635677043192926
Offset: 0
Original entry on oeis.org
1, 2, 15, 184, 2381, 30942, 402235, 5229044, 67977561, 883708282, 11488207655, 149346699504, 1941507093541, 25239592216022, 328114698808275, 4265491084507564, 55451384098598321, 720867993281778162, 9371283912663116095, 121826690864620509224, 1583746981240066619901
Offset: 0
Showing 1-10 of 14 results.
Comments