cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047857 a(n) = Sum_{k=0..n} A047848(k, n-k).

Original entry on oeis.org

1, 3, 8, 23, 73, 251, 920, 3573, 14695, 64047, 295792, 1445659, 7460349, 40539363, 231303192, 1381924345, 8623569739, 56078184471, 379232618512, 2662012084719, 19362915524849, 145719545817995, 1133022996552664, 9090156893772893, 75161929706243087, 639793220810832639
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    A047857:= func< n | n+1 + (&+[((k+1)^(n-k+2) -1)/k: k in [2..n+2]]) >;
    [A047857(n): n in [0..30]]; // G. C. Greubel, Jan 17 2025
    
  • Mathematica
    Table[Sum[((k+3)^(n-k) +k+1)/(k+2), {k,0,n}], {n,0,25}] (* Vaclav Kotesovec, May 23 2021 *)
  • Python
    def A047857(n): return n+1 +sum((pow(k+1, n-k+2) -1)//k for k in range(2,n+3))
    print([A047857(n) for n in range(31)]) # G. C. Greubel, Jan 17 2025

Formula

a(n) = n + 2 - H(n+2) + Sum_{k=2..n+2} (k+1)^(n-k+2)/k, where H(n) is the nth Harmonic number. - G. C. Greubel, Jan 17 2025

Extensions

a(14) onward corrected by Sean A. Irvine, May 22 2021
More terms from G. C. Greubel, Jan 17 2025