cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047887 Triangle of numbers T(n,k) = number of permutations of n things with longest increasing subsequence of length <=k (1<=k<=n).

Original entry on oeis.org

1, 1, 2, 1, 5, 6, 1, 14, 23, 24, 1, 42, 103, 119, 120, 1, 132, 513, 694, 719, 720, 1, 429, 2761, 4582, 5003, 5039, 5040, 1, 1430, 15767, 33324, 39429, 40270, 40319, 40320, 1, 4862, 94359, 261808, 344837, 361302, 362815, 362879, 362880, 1, 16796
Offset: 1

Views

Author

Eric Rains (rains(AT)caltech.edu), N. J. A. Sloane

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1,   2;
  1,   5,    6;
  1,  14,   23,   24;
  1,  42,  103,  119,  120;
  1, 132,  513,  694,  719,  720;
  1, 429, 2761, 4582, 5003, 5039, 5040;
  ...
		

Crossrefs

Rows are partial sums of A047874.

Programs

  • Mathematica
    h[l_] := Module[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
    T[n_] := Table[g[n - k, Min[n - k, k], {k}], {k, 1, n}] // Accumulate;
    Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 24 2016, after Alois P. Heinz *)

Extensions

More terms from Naohiro Nomoto, Mar 01 2002