cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A047874 Triangle of numbers T(n,k) = number of permutations of (1,2,...,n) with longest increasing subsequence of length k (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 9, 1, 1, 41, 61, 16, 1, 1, 131, 381, 181, 25, 1, 1, 428, 2332, 1821, 421, 36, 1, 1, 1429, 14337, 17557, 6105, 841, 49, 1, 1, 4861, 89497, 167449, 83029, 16465, 1513, 64, 1, 1, 16795, 569794, 1604098, 1100902, 296326, 38281, 2521, 81, 1
Offset: 1

Views

Author

Eric Rains (rains(AT)caltech.edu)

Keywords

Comments

Mirror image of triangle in A126065.
T(n,m) is also the sum of squares of n!/(product of hook lengths), summed over the partitions of n in exactly m parts (Robinson-Schensted correspondence). - Wouter Meeussen, Sep 16 2010
Table I "Distribution of L_n" on p. 98 of the Pilpel reference. - Joerg Arndt, Apr 13 2013
In general, for column k is a(n) ~ product(j!, j=0..k-1) * k^(2*n+k^2/2) / (2^((k-1)*(k+2)/2) * Pi^((k-1)/2) * n^((k^2-1)/2)) (result due to Regev) . - Vaclav Kotesovec, Mar 18 2014

Examples

			T(3,2) = 4 because 132, 213, 231, 312 have longest increasing subsequences of length 2.
Triangle T(n,k) begins:
  1;
  1,   1;
  1,   4,    1;
  1,  13,    9,    1;
  1,  41,   61,   16,   1;
  1, 131,  381,  181,  25,  1;
  1, 428, 2332, 1821, 421, 36,  1;
  ...
		

Crossrefs

Cf. A047887 and A047888.
Row sums give A000142.
Cf. A047884. - Wouter Meeussen, Sep 16 2010
Cf. A224652 (Table II "Distribution of F_n" on p. 99 of the Pilpel reference).
Cf. A245667.
T(2n,n) gives A267433.
Cf. A003316.

Programs

  • Maple
    h:= proc(l) local n; n:= nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
          +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
    g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
                    add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
    T:= n-> seq(g(n-k, min(n-k, k), [k]), k=1..n):
    seq(T(n), n=1..12);  # Alois P. Heinz, Jul 05 2012
  • Mathematica
    Table[Total[NumberOfTableaux[#]^2&/@ IntegerPartitions[n,{k}]],{n,7},{k,n}] (* Wouter Meeussen, Sep 16 2010, revised Nov 19 2013 *)
    h[l_List] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := Table[g[n-k, Min[n-k, k], {k}], {k, 1, n}]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 06 2014, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A003316(n). - Alois P. Heinz, Nov 04 2018

A214015 Number of permutations A(n,k) in S_n with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 5, 1, 0, 1, 1, 2, 6, 14, 1, 0, 1, 1, 2, 6, 23, 42, 1, 0, 1, 1, 2, 6, 24, 103, 132, 1, 0, 1, 1, 2, 6, 24, 119, 513, 429, 1, 0, 1, 1, 2, 6, 24, 120, 694, 2761, 1430, 1, 0, 1, 1, 2, 6, 24, 120, 719, 4582, 15767, 4862, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 01 2012

Keywords

Comments

A(n,k) is also the sum of the squares of numbers of standard Young tableaux (SYT) of height <= k over all partitions of n.
This array is a larger and reflected version of A047888.
Column k>1 is asymptotic to (Product_{j=1..k} j!) * k^(2*n + k^2/2) / (Pi^((k-1)/2) * 2^((k-1)*(k+2)/2) * n^((k^2-1)/2)). - Vaclav Kotesovec, Sep 10 2014

Examples

			A(4,2) = 14 because 14 permutations of {1,2,3,4} do not contain an increasing subsequence of length > 2: 1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312, 4321.  Permutation 1423 is not counted because it contains the noncontiguous increasing subsequence 123.
A(4,2) = 14 = 2^2 + 3^2 + 1^2 because the partitions of 4 with <= 2 parts are [2,2], [3,1], [4] with 2, 3, 1 standard Young tableaux, respectively:
  +------+  +------+  +---------+  +---------+  +---------+  +------------+
  | 1  3 |  | 1  2 |  | 1  3  4 |  | 1  2  4 |  | 1  2  3 |  | 1  2  3  4 |
  | 2  4 |  | 3  4 |  | 2 .-----+  | 3 .-----+  | 4 .-----+  +------------+
  +------+  +------+  +---+        +---+        +---+
Square array A(n,k) begins:
  1,  1,   1,    1,    1,    1,    1,    1, ...
  0,  1,   1,    1,    1,    1,    1,    1, ...
  0,  1,   2,    2,    2,    2,    2,    2, ...
  0,  1,   5,    6,    6,    6,    6,    6, ...
  0,  1,  14,   23,   24,   24,   24,   24, ...
  0,  1,  42,  103,  119,  120,  120,  120, ...
  0,  1, 132,  513,  694,  719,  720,  720, ...
  0,  1, 429, 2761, 4582, 5003, 5039, 5040, ...
		

Crossrefs

Differences between A000142 and columns k=0-9 give: A000142 (for n>0), A033312, A056986, A158005, A158432, A159139, A159175, A217675, A217676, A217677.
Main diagonal and first lower diagonal give: A000142, A033312.
A(2n,n-1) gives A269042(n) for n>0.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
          +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
                     add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
    A:= (n, k)-> `if`(k>=n, n!, g(n, k, [])):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[1+l[[i]]-j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
    A[n_, k_] := If[k >= n, n!, g[n, k, {}]];
    Table [Table [A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)

A047888 Rectangular array of numbers a(n,k) = number of permutations of n things with longest increasing subsequence of length <= k (1 <= k <= oo), read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 14, 6, 2, 1, 1, 42, 23, 6, 2, 1, 1, 132, 103, 24, 6, 2, 1, 1, 429, 513, 119, 24, 6, 2, 1, 1, 1430, 2761, 694, 120, 24, 6, 2, 1, 1, 4862, 15767, 4582, 719, 120, 24, 6, 2, 1, 1, 16796, 94359, 33324, 5003, 720, 120, 24, 6, 2, 1, 1, 58786, 586590
Offset: 1

Views

Author

Eric Rains (rains(AT)caltech.edu), N. J. A. Sloane

Keywords

Comments

Also a(n,k) is the dimension of the space of SL(k)-invariants in V^n tensor (V^*)^n, where V is the standard k-dimensional representation of SL(k) and V^* is its dual. - Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005

Examples

			Square array a(n,k) begins:
  1,   1,    1,    1,    1,    1, ...
  1,   2,    2,    2,    2,    2, ...
  1,   5,    6,    6,    6,    6, ...
  1,  14,   23,   24,   24,   24, ...
  1,  42,  103,  119,  120,  120, ...
  1, 132,  513,  694,  719,  720, ...
		

Crossrefs

Rows of the array are partial sums of A047874. Cf. A047887.
Subarray of A214015.

Programs

  • Mathematica
    rows = 12; h[l_List] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]] ; g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := Table[g[n-k, Min[n-k, k], {k}], {k, 1, rows}] // Accumulate; A047888 = Table[T[n], {n, 1, rows}]; Table[A047888[[n-k+1, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 06 2014, after Alois P. Heinz *)
  • PARI
    b(n, k) = {
      my(x = 'x + O('x^(2*n)));
      sum(i = 0, n, x^(2*i+k)/(i!*(i+k)!));
    };
    u(n, k) = {
      my(v = Vec(matdet(matrix(k, k, i, j, b(n, abs(i-j))))));
      return(vector((#v-1)\2, i, v[2*i+1] * i!^2));
    };
    A(n, k) = {
      my(m = [;]);
      for (i = 1, k, m = concat(m, u(n, i)~));
      return(m);
    };
    A(6, 6)  \\ Gheorghe Coserea, Feb 02 2016

Extensions

More terms from Naohiro Nomoto, Mar 01 2002

A331883 The number of permutations in the symmetric group S_n in which it is possible to find two disjoint increasing subsequences each with length equal to the length of the longest increasing subsequence of the permutation.

Original entry on oeis.org

0, 1, 1, 5, 26, 132, 834, 6477, 56242
Offset: 1

Views

Author

Ildar Gainullin, Jan 30 2020

Keywords

Comments

Only permutations whose longest increasing subsequence is at most n/2 need to be considered.

Examples

			a(3) = 1 because the only permutation whose longest increasing subsequence is 1 is [3,2,1] and this contains two disjoint increasing subsequences of length 1.
The a(4) = 5 permutations are:
  [2,1,4,3],
  [2,4,1,3],
  [3,1,4,2],
  [3,4,1,2],
  [4,3,2,1].
		

Crossrefs

Showing 1-4 of 4 results.