A141824
Antidiagonals of table A047888 (which counts longest increasing subsequences and pattern avoidances).
Original entry on oeis.org
1, 2, 4, 9, 24, 75, 269, 1095, 5039, 26084, 150356, 952526, 6553011, 48553418, 385693800, 3277413802, 29741002168, 287555932433, 2952769116993, 32079033571080, 367336668735826, 4419518218479215, 55733223965845539, 735448682261126767, 10142738983005750681
Offset: 1
We can write A141824(n) = 1 2 4 9 24 ... because A047888 begins
1;
1, 1;
1, 2, 1;
1, 5, 2, 1;
1, 14, 6, 2, 1;
etc.
A005802
Number of permutations in S_n with longest increasing subsequence of length <= 3 (i.e., 1234-avoiding permutations); vexillary permutations (i.e., 2143-avoiding).
Original entry on oeis.org
1, 1, 2, 6, 23, 103, 513, 2761, 15767, 94359, 586590, 3763290, 24792705, 167078577, 1148208090, 8026793118, 56963722223, 409687815151, 2981863943718, 21937062144834, 162958355218089, 1221225517285209, 9225729232653663, 70209849031116183, 537935616492552297
Offset: 0
- Eric S. Egge, Defying God: The Stanley-Wilf Conjecture, Stanley-Wilf Limits, and a Two-Generation Explosion of Combinatorics, pp. 65-82 of "A Century of Advancing Mathematics", ed. S. F. Kennedy et al., MAA Press 2015.
- S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.16(e), p. 453.
- Alois P. Heinz, Table of n, a(n) for n = 0..1060
- Michael Albert and Mireille Bousquet-Mélou, Permutations sortable by two stacks in parallel and quarter plane walks, arXiv:1312.4487 [math.CO], 2014-2015.
- Michael Albert and Mireille Bousquet-Mélou, Permutations sortable by two stacks in parallel and quarter plane walks, European Journal of Combinatorics 43 (2015), 131-164.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- A. Burstein and J. Pantone, Two examples of unbalanced Wilf-equivalence, arXiv preprint arXiv:1402.3842 [math.CO], 2014.
- CombOS - Combinatorial Object Server, Generate pattern-avoiding permutations
- Andrew R. Conway and Anthony J. Guttmann, On 1324-avoiding permutations, Advances in Applied Mathematics, Volume 64, March 2015, p. 50-69.
- Andrew R. Conway and Anthony J. Guttmann, Counting occurrences of patterns in permutations, arXiv:2306.12682 [math.CO], 2023. See p. 18.
- Tom Denton, Algebraic and Affine Pattern Avoidance, arXiv preprint arXiv:1303.3767 [math.CO], 2013.
- Eric S. Egge, Defying God: The Stanley-Wilf Conjecture, Stanley-Wilf Limits, and a Two-Generation Explosion of Combinatorics, MAA Focus, August/September 2015, pp. 33-34. [Annotated scanned copy]
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
- Steven Finch, Pattern-Avoiding Permutations [Cached copy at the Wayback Machine]
- Steven Finch, Pattern-Avoiding Permutations [Cached copy, with permission]
- A. L. L. Gao, S. Kitaev, and P. B. Zhang, On pattern avoiding indecomposable permutations, arXiv:1605.05490 [math.CO], 2016.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory A 53 (1990), 257-285.
- O. Guibert and E. Pergola, Enumeration of vexillary involutions which are equal to their mirror/complement, Discrete Math., Vol. 224 (2000), pp. 281-287.
- Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
- Eric Marberg, Crossings and nestings in colored set partitions, arXiv preprint arXiv:1203.5738 [math.CO], 2012.
- J. Noonan and D. Zeilberger, The Enumeration of Permutations With A Prescribed Number of "Forbidden" Patterns.
- J. Noonan and D. Zeilberger, The Enumeration of Permutations With A Prescribed Number of "Forbidden" Patterns, Advances in Applied Mathematics, Vol. 17, 1996, pp. 381-407.
- J. Noonan and D. Zeilberger, The Enumeration of Permutations With a Prescribed Number of "Forbidden" Patterns, arXiv:math/9808080 [math.CO], 1998.
- Erik Ouchterlony, Pattern avoiding doubly alternating permutations
- Permutation Pattern Avoidance Library (PermPAL), 0123
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
- Anders Bjorner and Richard P. Stanley, A combinatorial miscellany
- R. P. Stanley, Recent Progress in Algebraic Combinatorics, Bull. Amer. Math. Soc., 40 (2003), 55-68.
-
a:= n-> 2*add(binomial(2*k,k)*(binomial(n,k))^2*(3*k^2+2*k+1-n-2*k*n)/ (k+1)^2/(k+2)/(n-k+1),k=0..n);
A005802:=rsolve({a(0) = 1, a(1) = 1, (n^2 + 8*n + 16)*a(n + 2) = (10*n^2 + 42*n + 41)*a(n + 1) - (9*n^2 + 18*n + 9)*a(n)},a(n),makeproc): # Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005
-
a[n_] := 2Sum[Binomial[2k, k]Binomial[n, k]^2(3k^2+2k+1-n-2k*n)/((k+1)^2(k+2)(n-k+1)), {k, 0, n}]
(* Second program:*)
a[0] = a[1] = 1; a[n_] := a[n] = ((10*n^2+2*n-3)*a[n-1] + (-9*n^2+18*n-9)* a[n-2])/(n+2)^2; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 20 2017 *)
Table[HypergeometricPFQ[{1/2, -1 - n, -n}, {2, 2}, 4] / (n+1), {n, 0, 25}] (* Vaclav Kotesovec, Jun 07 2021 *)
-
a(n)=2*sum(k=0,n,binomial(2*k,k)*binomial(n,k)^2*(3*k^2+2*k+1-n-2*k*n)/(k+1)^2/(k+2)/(n-k+1)) \\ Charles R Greathouse IV, Sep 26 2012
More terms from Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005
A047889
Number of permutations in S_n with longest increasing subsequence of length <= 4.
Original entry on oeis.org
1, 1, 2, 6, 24, 119, 694, 4582, 33324, 261808, 2190688, 19318688, 178108704, 1705985883, 16891621166, 172188608886, 1801013405436, 19274897768196, 210573149141896, 2343553478425816, 26525044132374656, 304856947930144656
Offset: 0
G.f. = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + 119*x^5 + 694*x^6 + 4582*x^7 + ...
- Gheorghe Coserea, Table of n, a(n) for n = 0..300
- F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
- Peter J. Forrester and Fei Wei, Higher order linear differential equations for unitary matrix integrals: applications and generalisations, arXiv:2508.20797 [math-ph], 2025.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory A 53 (1990), 257-285.
- Permutation Pattern Avoidance Library (PermPAL), 12345
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
- Index entries for sequences related to Young tableaux.
-
A:=rsolve({a(0) = 1, a(1) = 1, (n^3 + 16*n^2 + 85*n + 150)*a(n + 2) = (20*n^3 + 182*n^2 + 510*n + 428)*a(n + 1) - (64*n^3 + 256*n^2 + 320*n +128)*a(n)}, a(n), makeproc): # Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005
-
Flatten[{1,RecurrenceTable[{64*(-1+n)^2*n*a[-2+n]-2*(-12 + 11*n + 31*n^2 + 10*n^3)*a[-1+n] + (3+n)^2*(4+n)*a[n]==0,a[1]==1,a[2]==2},a,{n,20}]}] (* Vaclav Kotesovec, Sep 10 2014 *)
-
{a(n) = my(v); if( n<2, n>=0, v = vector(n+1, k, 1); for(k=2, n, v[k+1] = ((20*k^3 + 62*k^2 + 22*k - 24) * v[k] - 64*k*(k-1)^2 * v[k-1]) / ((k+3)^2 * (k+4))); v[n+1])}; /* Michael Somos, Apr 19 2015 */
A047874
Triangle of numbers T(n,k) = number of permutations of (1,2,...,n) with longest increasing subsequence of length k (1<=k<=n).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 13, 9, 1, 1, 41, 61, 16, 1, 1, 131, 381, 181, 25, 1, 1, 428, 2332, 1821, 421, 36, 1, 1, 1429, 14337, 17557, 6105, 841, 49, 1, 1, 4861, 89497, 167449, 83029, 16465, 1513, 64, 1, 1, 16795, 569794, 1604098, 1100902, 296326, 38281, 2521, 81, 1
Offset: 1
Eric Rains (rains(AT)caltech.edu)
T(3,2) = 4 because 132, 213, 231, 312 have longest increasing subsequences of length 2.
Triangle T(n,k) begins:
1;
1, 1;
1, 4, 1;
1, 13, 9, 1;
1, 41, 61, 16, 1;
1, 131, 381, 181, 25, 1;
1, 428, 2332, 1821, 421, 36, 1;
...
- Leonid Petrov, Rows n = 1..120, flattened (first 60 rows from Alois P. Heinz)
- P. Diaconis, Group Representations in Probability and Statistics, IMS, 1988; see p. 112.
- FindStat - Combinatorial Statistic Finder, The length of the longest increasing subsequence of the permutation.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
- J. M. Hammersley, A few seedings of research, in Proc. Sixth Berkeley Sympos. Math. Stat. and Prob., ed. L. M. le Cam et al., Univ. Calif. Press, 1972, Vol. I, pp. 345-394.
- Guo-Niu Han, A promenade in the garden of hook length formulas, Slides, 61st SLC Curia, Portugal - September 22, 2008. [From _Wouter Meeussen_, Sep 16 2010]
- J. Hunt and T. Szymanski, A fast algorithm for computing longest common subsequences, Commun. ACM, 20 (1977), 350-353.
- E. Irurozki, B. Calvo, and J. A. Lozano, Sampling and learning the Mallows model under the Ulam distance, Technical Report, 2014.
- S. Pilpel, Descending subsequences of random permutations, J. Combin. Theory, A 53 (1990), 96-116.
- A. Regev, Asymptotic values for degrees associated with strips of Young diagrams, Adv. in Math. 41 (1981), 115-136.
- C. Schensted, Longest increasing and decreasing subsequences, Canadian J. Math. 13 (1961), 179-191.
- Richard P. Stanley, Increasing and Decreasing Subsequences of Permutations and Their Variants, arXiv:math/0512035 [math.CO], 2005.
- Wikipedia, Longest increasing subsequence problem
Cf.
A224652 (Table II "Distribution of F_n" on p. 99 of the Pilpel reference).
-
h:= proc(l) local n; n:= nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
T:= n-> seq(g(n-k, min(n-k, k), [k]), k=1..n):
seq(T(n), n=1..12); # Alois P. Heinz, Jul 05 2012
-
Table[Total[NumberOfTableaux[#]^2&/@ IntegerPartitions[n,{k}]],{n,7},{k,n}] (* Wouter Meeussen, Sep 16 2010, revised Nov 19 2013 *)
h[l_List] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := Table[g[n-k, Min[n-k, k], {k}], {k, 1, n}]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 06 2014, after Alois P. Heinz *)
A214015
Number of permutations A(n,k) in S_n with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 5, 1, 0, 1, 1, 2, 6, 14, 1, 0, 1, 1, 2, 6, 23, 42, 1, 0, 1, 1, 2, 6, 24, 103, 132, 1, 0, 1, 1, 2, 6, 24, 119, 513, 429, 1, 0, 1, 1, 2, 6, 24, 120, 694, 2761, 1430, 1, 0, 1, 1, 2, 6, 24, 120, 719, 4582, 15767, 4862, 1, 0
Offset: 0
A(4,2) = 14 because 14 permutations of {1,2,3,4} do not contain an increasing subsequence of length > 2: 1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312, 4321. Permutation 1423 is not counted because it contains the noncontiguous increasing subsequence 123.
A(4,2) = 14 = 2^2 + 3^2 + 1^2 because the partitions of 4 with <= 2 parts are [2,2], [3,1], [4] with 2, 3, 1 standard Young tableaux, respectively:
+------+ +------+ +---------+ +---------+ +---------+ +------------+
| 1 3 | | 1 2 | | 1 3 4 | | 1 2 4 | | 1 2 3 | | 1 2 3 4 |
| 2 4 | | 3 4 | | 2 .-----+ | 3 .-----+ | 4 .-----+ +------------+
+------+ +------+ +---+ +---+ +---+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, ...
0, 1, 5, 6, 6, 6, 6, 6, ...
0, 1, 14, 23, 24, 24, 24, 24, ...
0, 1, 42, 103, 119, 120, 120, 120, ...
0, 1, 132, 513, 694, 719, 720, 720, ...
0, 1, 429, 2761, 4582, 5003, 5039, 5040, ...
Columns k=0-10 give:
A000007,
A000012,
A000108,
A005802,
A047889,
A047890,
A052399,
A072131,
A072132,
A072133,
A072167.
A(2n,n-1) gives
A269042(n) for n>0.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
A:= (n, k)-> `if`(k>=n, n!, g(n, k, [])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[1+l[[i]]-j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
A[n_, k_] := If[k >= n, n!, g[n, k, {}]];
Table [Table [A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
A047890
Number of permutations in S_n with longest increasing subsequence of length <= 5.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 719, 5003, 39429, 344837, 3291590, 33835114, 370531683, 4285711539, 51990339068, 657723056000, 8636422912277, 117241501095189, 1639974912709122, 23570308719710838, 347217077020664880, 5231433025400049936, 80466744544235325387
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..735
- F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513, 2015.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
- Permutation Pattern Avoidance Library (PermPAL), 012345
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
- Index entries for sequences related to Young tableaux.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l)
`if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
end:
a:= n-> g(n, 5, []):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 10 2012
# second Maple program
a:= proc(n) option remember; `if`(n<6, n!, ((-375+400*n+843*n^2
+322*n^3+35*n^4)*a(n-1) +225*(n-1)^2*(n-2)^2*a(n-3)
-(259*n^2+622*n+45)*(n-1)^2*a(n-2))/ ((n+6)^2*(n+4)^2))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 26 2012
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_, k_] := If[k >= n, n!, g[n, k, {}]]; Table[a[n, 5], {n, 1, 30}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
A047887
Triangle of numbers T(n,k) = number of permutations of n things with longest increasing subsequence of length <=k (1<=k<=n).
Original entry on oeis.org
1, 1, 2, 1, 5, 6, 1, 14, 23, 24, 1, 42, 103, 119, 120, 1, 132, 513, 694, 719, 720, 1, 429, 2761, 4582, 5003, 5039, 5040, 1, 1430, 15767, 33324, 39429, 40270, 40319, 40320, 1, 4862, 94359, 261808, 344837, 361302, 362815, 362879, 362880, 1, 16796
Offset: 1
Triangle T(n,k) begins:
1;
1, 2;
1, 5, 6;
1, 14, 23, 24;
1, 42, 103, 119, 120;
1, 132, 513, 694, 719, 720;
1, 429, 2761, 4582, 5003, 5039, 5040;
...
-
h[l_] := Module[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
T[n_] := Table[g[n - k, Min[n - k, k], {k}], {k, 1, n}] // Accumulate;
Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 24 2016, after Alois P. Heinz *)
Showing 1-7 of 7 results.
Comments