A059804
Consider the line segment in R^n from the origin to the point v=(2,3,5,7,11,...) with prime coordinates; let d = squared distance to this line from the closest point of Z^n (excluding the endpoints). Sequence gives d times v.v.
Original entry on oeis.org
1, 3, 9, 39, 87, 215, 391, 711, 1326, 1975, 2925, 4256, 5696, 7537, 9774, 12488, 16322, 20477, 24966, 30007, 35336, 41577, 48466, 56387, 65796, 75997, 86606, 98055, 109936, 122705, 138834, 155995, 174764, 194085, 216286, 239087, 263736, 290305
Offset: 2
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, Fat Struts: Constructions and a Bound, Proceedings Information Theory Workshop, Taormino, Italy, 2009. [Cached copy]
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, A Note on Projecting the Cubic Lattice, Discrete and Computational Geometry, Vol. 46 (No. 3, 2011), 472-478.
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, The Lifting Construction: A General Solution to the Fat Strut Problem, Proceedings International Symposium on Information Theory (ISIT), 2010, IEEE Press. [Cached copy]
Cf.
A137609 (where the minimum distance occurs along the line segment).
A060452
Let v = (1,4,9,...,n^2), x = (0,1,2,4,6,...) [first n terms of A002620]; a(n) = v.v * x.x - (v.x)^2.
Original entry on oeis.org
0, 1, 6, 38, 107, 350, 728, 1752, 3090, 6215, 9878, 17654, 26117, 42924, 60256, 93024, 125460, 184509, 241110, 341110, 434511, 595562, 742808, 991640, 1215110, 1586403, 1914822, 2452646, 2922185, 3681560, 4337024, 5385600, 6281704, 7701561, 8904294, 10793862, 12381939, 14858038, 16924440, 20124440, 22778042, 26862143, 30229430, 35383062, 39609933, 46046276, 51299936, 59262560, 65733500, 75499125
Offset: 1
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, Fat Struts: Constructions and a Bound, Proceedings Information Theory Workshop, Taormino, Italy, 2009. [Cached copy]
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, A Note on Projecting the Cubic Lattice, Discrete and Computational Geometry, Vol. 46 (No. 3, 2011), 472-478.
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, The Lifting Construction: A General Solution to the Fat Strut Problem, Proceedings International Symposium on Information Theory (ISIT), 2010, IEEE Press. [Cached copy]
- Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1).
-
fv := n->1/30*n*(1+n)*(2*n+1)*(3*n^2+3*n-1); # this is A000538
f1 := n->1/160*(n-1)*(1+n)*(2*n^3+5*n^2+2*n-5);
f2 := n->1/160*n*(n+2)*(2*n^3+n^2-2*n+4);
f7 := n->if n mod 2 = 0 then f2(n) else f1(n) end if; # this is A059859
f3 := n->1/20*n^5+1/8*n^4+1/24*n^3-11/120*n-1/8*n^2;
f4 := n->1/20*n^5+1/8*n^4+1/24*n^3+1/30*n;
f5:-n-> if `mod`(n,2) = 0 then f4(n) else f3(n) end if; # this is A060453
A060452 := n->f7(n)*fv(n)-f5(n)^2;
-
Table[Module[{nn=n,v,x},v=Range[nn]^2;x=Floor[v/4];v.v x.x-(v.x)^2],{n,50}] (* or *) LinearRecurrence[{1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1},{0,1,6,38,107,350,728,1752,3090,6215,9878,17654,26117},50] (* Harvey P. Dale, Aug 10 2021 *)
A060453
Dot product of the squares and the quarter-squares: a(n) = sum(i=1..n, i^2 * floor(i^2/4)).
Original entry on oeis.org
0, 4, 22, 86, 236, 560, 1148, 2172, 3792, 6292, 9922, 15106, 22204, 31808, 44408, 60792, 81600, 107844, 140334, 180334, 228844, 287408, 357236, 440180, 537680, 651924, 784602, 938266, 1114876, 1317376, 1548016, 1810160, 2106368, 2440452
Offset: 1
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, Fat Struts: Constructions and a Bound, Proceedings Information Theory Workshop, Taormino, Italy, 2009. [Cached copy]
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, A Note on Projecting the Cubic Lattice, Discrete and Computational Geometry, Vol. 46 (No. 3, 2011), 472-478.
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, The Lifting Construction: A General Solution to the Fat Strut Problem, Proceedings International Symposium on Information Theory (ISIT), 2010, IEEE Press. [Cached copy]
- Index entries for linear recurrences with constant coefficients, signature (3,0,-8,6,6,-8,0,3,-1).
A124255
Forest-and-trees problem: square of distance to most distant visible tree.
Original entry on oeis.org
2, 5, 13, 17, 34, 41, 61, 74, 97, 113, 137, 157, 194, 221, 250, 281, 317, 353, 397, 433, 482, 521, 569, 617, 674, 725, 778, 829, 898, 953, 1021, 1082, 1154, 1217, 1289, 1361, 1433, 1517, 1597, 1669, 1762, 1825, 1933, 2018, 2113, 2197, 2297, 2393, 2498, 2594
Offset: 2
Example: at n = 5, there are 40 visible tree trunks; defining the origin as the location of the observer, they are the ones located at (1,0), (4,1), (3,1), (2,1), (3,2), (1,1) and all the additional locations that result from using every possible reflection of them across the x-axis, the y-axis, or the diagonal, y=x. (The tree trunk at (4,3) is considered completely obscured by ones at (3,2) and (1,1), each of which is tangent to the line 4y = 3x.)
The most distant visible tree trunks are the ones located at the lattice point (4,1) and its symmetrical locations; the square of their distance from the origin is 17, so a(5) = 17.
A059774
Consider the line segment in R^n from the origin to the point P=(1,2,3,...,n); let d = squared distance to this line from the closest point of Z^n (excluding the endpoints). Sequence gives d times P.P.
Original entry on oeis.org
1, 3, 9, 21, 40, 75, 120, 189, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370
Offset: 2
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, Fat Struts: Constructions and a Bound, Proceedings Information Theory Workshop, Taormino, Italy, 2009. [Cached copy]
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, A Note on Projecting the Cubic Lattice, Discrete and Computational Geometry, Vol. 46 (No. 3, 2011), 472-478.
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, The Lifting Construction: A General Solution to the Fat Strut Problem, Proceedings International Symposium on Information Theory (ISIT), 2010, IEEE Press. [Cached copy]
A060454
Consider the line segment in R^n from the origin to the point v = (1,4,9,...,n^2); let d = squared distance to this line from the closest point of Z^n (excluding the endpoints). Sequence gives d times v.v.
Original entry on oeis.org
1, 6, 38, 107, 350, 728, 1752, 3090, 6215, 9878, 17654, 26117, 42924, 60256, 93024, 125460, 184509, 241110, 341110, 434511, 595562, 742808, 991640, 1215110, 1586403, 1914822, 2452646, 2922185, 3681560, 4337024, 5385600, 6281704, 7701561, 8904294, 10793862, 12381939, 14822755, 16907891, 19221332, 21781332, 24607093, 27718789, 31137590
Offset: 0
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, Fat Struts: Constructions and a Bound, Proceedings Information Theory Workshop, Taormino, Italy, 2009. [Cached copy]
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, A Note on Projecting the Cubic Lattice, Discrete and Computational Geometry, Vol. 46 (No. 3, 2011), 472-478.
- N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, The Lifting Construction: A General Solution to the Fat Strut Problem, Proceedings International Symposium on Information Theory (ISIT), 2010, IEEE Press. [Cached copy]
Showing 1-6 of 6 results.
Comments