cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047924 a(n) = B_{A_n+1}+1, where A_n = floor(n*phi) = A000201(n), B_n = floor(n*phi^2) = A001950(n) and phi is the golden ratio.

Original entry on oeis.org

3, 6, 11, 14, 19, 24, 27, 32, 35, 40, 45, 48, 53, 58, 61, 66, 69, 74, 79, 82, 87, 90, 95, 100, 103, 108, 113, 116, 121, 124, 129, 134, 137, 142, 147, 150, 155, 158, 163, 168, 171, 176, 179, 184, 189, 192, 197, 202, 205, 210, 213, 218, 223, 226, 231, 234, 239
Offset: 0

Views

Author

Keywords

Comments

2nd column of array in A038150.
Apart from the first term also the second column of A126714; see also A223025. - Casey Mongoven, Mar 11 2013

References

  • Clark Kimberling, Stolarsky interspersions, Ars Combinatoria 39 (1995), 129-138.

Crossrefs

Cf. A007066.

Programs

  • Maple
    A001950 := proc(n)
            local phi;
            phi := (1+sqrt(5))/2 ;
            floor(n*phi^2) ;
    end proc:
    A000201 := proc(n)
            local phi;
            phi := (1+sqrt(5))/2 ;
            floor(n*phi) ;
    end proc:
    A047924 := proc(n)
            1+A001950(1+A000201(n)) ;
    end proc: # R. J. Mathar, Mar 20 2013
  • Mathematica
    A[n_] := Floor[n*GoldenRatio]; B[n_] := Floor[n*GoldenRatio^2]; a[n_] := B[A[n]+1]+1; Table[a[n], {n, 0, 56}] (* Jean-François Alcover, Feb 11 2014 *)
  • Python
    from mpmath import *
    mp.dps=100
    import math
    def A(n): return int(math.floor(n*phi))
    def B(n): return int(math.floor(n*phi**2))
    def a(n): return B(A(n) + 1) + 1 # Indranil Ghosh, Apr 25 2017
    
  • Python
    from math import isqrt
    def A047924(n): return ((m:=(n+isqrt(5*n**2)>>1)+1)+isqrt(5*m**2)>>1)+m+1 # Chai Wah Wu, Aug 25 2022

Extensions

More terms from Naohiro Nomoto, Jun 08 2001
New description from Aviezri S. Fraenkel, Aug 03 2007