A047935 Consider primes p with least positive primitive root g such that q=p+g is next prime after p; sequence gives values of g.
1, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 6, 2, 6, 10, 2, 6, 2, 2, 2, 6, 2, 2, 6, 6, 2, 10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 2, 6, 2, 6, 6, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 10, 2, 2, 2, 2, 6, 2, 6, 2, 2, 2, 2, 6, 2, 2, 2, 2, 10, 6, 10, 2, 2, 2, 10, 2, 2, 2, 6, 10
Offset: 1
Examples
11 has primitive root 2 and 11+2 = 13 is prime after 11, which contributes a 2 to the sequence.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Index entries for primes by primitive root
Programs
-
Mathematica
f[p_] := {g = PrimitiveRoot[p], p + g == NextPrime[p]}; A047935 = Select[f /@ Prime /@ Range[1000], #[[2]]& ][[All, 1]](* Jean-François Alcover, Feb 15 2012 *)
Extensions
More terms from James Sellers, Dec 22 1999