A047948 Smallest of three consecutive primes with a difference of 6: primes p such that p+6 and p+12 are the next two primes.
47, 151, 167, 251, 257, 367, 557, 587, 601, 647, 727, 941, 971, 1097, 1117, 1181, 1217, 1361, 1741, 1747, 1901, 2281, 2411, 2671, 2897, 2957, 3301, 3307, 3631, 3727, 4007, 4451, 4591, 4651, 4987, 5101, 5107, 5297, 5381, 5387, 5557, 5801, 6067, 6257, 6311, 6317
Offset: 1
Examples
47 is a term as the next two primes are 53 and 59.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Crossrefs
Programs
-
Mathematica
ok[p_] := (q = NextPrime[p]) == p+6 && NextPrime[q] == q+6; Select[Prime /@ Range[1000], ok][[;; 45]] (* Jean-François Alcover, Jul 11 2011 *) Transpose[Select[Partition[Prime[Range[1000]],3,1],Differences[#]=={6,6}&]] [[1]] (* Harvey P. Dale, Apr 25 2014 *)
-
PARI
is_A047948(n)={nextprime(n+1)==n+6 && nextprime(n+7)==n+12 && isprime(n)} \\ Charles R Greathouse IV, Aug 17 2011, simplified by M. F. Hasler, Jan 13 2013
-
PARI
p=2;q=3;forprime(r=5,1e4,if(r-p==12&&q-p==6,print1(p", "));p=q;q=r) \\ Charles R Greathouse IV, Aug 17 2011
Extensions
Corrected by T. D. Noe, Mar 07 2008
Comments