A047967 Number of partitions of n with some part repeated.
0, 0, 1, 1, 3, 4, 7, 10, 16, 22, 32, 44, 62, 83, 113, 149, 199, 259, 339, 436, 563, 716, 913, 1151, 1453, 1816, 2271, 2818, 3496, 4309, 5308, 6502, 7959, 9695, 11798, 14298, 17309, 20877, 25151, 30203, 36225, 43323, 51748, 61651, 73359, 87086, 103254, 122164
Offset: 0
Keywords
Examples
a(5) = 4 because we have [3,1,1], [2,2,1], [2,1,1,1] and [1,1,1,1,1] ([5], [4,1] and [3,2] do not qualify).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- H. Bottomley, Illustration for A000009, A000041, A047967.
Programs
-
Maple
g:=sum(x^(2*k)*product(1+x^j,j=k+1..70)/product(1-x^j,j=1..k),k=1..40): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..44); # Emeric Deutsch, Mar 30 2006
-
Mathematica
Table[PartitionsP[n]-PartitionsQ[n],{n,0,50}] (* Harvey P. Dale, Jan 17 2019 *)
-
PARI
x='x+O('x^66); concat([0,0], Vec(1/eta(x)-eta(x^2)/eta(x))) \\ Joerg Arndt, Jun 21 2011
Formula
G.f.: Sum_{k>=1} x^(2*k)*(Product_{j>=k+1} (1+x^j)) / Product_{j=1..k} (1-x^j) = Sum_{k>=1} x^(2*k)/(Product_{j=1..2*k} (1-x^j)*Product_{j>=k} (1-x^(2*j+1))). - Emeric Deutsch, Mar 30 2006
G.f.: 1/P(x) - P(x^2)/P(x) where P(x) = Product_{k>=1} (1-x^k). - Joerg Arndt, Jun 21 2011
a(n) = p(n-2)+p(n-4)-p(n-10)-p(n-14)+...+(-1^(j-1))*p(n-j*(3*j-1)) + (-1^(j-1))*p(n-j*(3*j+1))+..., where p(n) = A000041(n). - Gregory L. Simay, Aug 28 2023
Comments