A047994 Unitary totient (or unitary phi) function uphi(n).
1, 1, 2, 3, 4, 2, 6, 7, 8, 4, 10, 6, 12, 6, 8, 15, 16, 8, 18, 12, 12, 10, 22, 14, 24, 12, 26, 18, 28, 8, 30, 31, 20, 16, 24, 24, 36, 18, 24, 28, 40, 12, 42, 30, 32, 22, 46, 30, 48, 24, 32, 36, 52, 26, 40, 42, 36, 28, 58, 24, 60, 30, 48, 63, 48, 20, 66, 48, 44, 24, 70
Offset: 1
Examples
a(12) = a(3)*a(4) = 2*3 = 6.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Zeitschr. 74 (1960) 66-80
- Steven R. Finch, Unitarism and infinitarism.
- Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
- M. Lal, Iterates of the unitary totient function, Math. Comp., 28 (1974), 301-302.
- R. J. Mathar, Survey of Dirichlet Series of Multiplicative Arithmetic Functions, arXiv:1106.4038 [math.NT], 2011, Remark 43.
- László Tóth, On the Bi-Unitary Analogues of Euler's Arithmetical Function and the Gcd-Sum Function, JIS 12 (2009), Article 09.5.2.
- László Tóth, A survey of gcd-sum functions, J. Int. Seq. 13 (2010), Article 10.8.1.
Programs
-
Haskell
a047994 n = f n 1 where f 1 uph = uph f x uph = f (x `div` sppf) (uph * (sppf - 1)) where sppf = a028233 x -- Reinhard Zumkeller, Aug 17 2011
-
Maple
A047994 := proc(n) local a, f; a := 1 ; for f in ifactors(n)[2] do a := a*(op(1,f)^op(2,f)-1) ; end do: a ; end proc: seq(A047994(n),n=1..20) ; # R. J. Mathar, Dec 22 2011
-
Mathematica
uphi[n_] := (Times @@ (Table[ #[[1]]^ #[[2]] - 1, {1} ] & /@ FactorInteger[n]))[[1]]; Table[ uphi[n], {n, 2, 75}] (* Robert G. Wilson v, Sep 06 2004 *) uphi[n_] := If[n==1, 1, Product[{p, e} = pe; p^e-1, {pe, FactorInteger[n]}] ]; Array[uphi, 80] (* Jean-François Alcover, Nov 17 2018 *)
-
PARI
A047994(n)=my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1);
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + p*X^2)/(1-X)/(1-p*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 15 2020
-
Python
from math import prod from sympy import factorint def A047994(n): return prod(p**e-1 for p, e in factorint(n).items()) # Chai Wah Wu, Sep 24 2021
Formula
If n = Product p_i^e_i, uphi(n) = Product (p_i^e_i - 1).
a(n) = A000010(n)*A000203(A003557(n))/A003557(n). - Velin Yanev and Charles R Greathouse IV, Aug 23 2017
From Amiram Eldar, May 29 2020: (Start)
a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-1)^omega(d) * n/d.
Sum_{d|n, gcd(d, n/d) = 1} a(d) = n.
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = A065464 = Product_{primes p} (1 - 2/p^2 + 1/p^3). - Vaclav Kotesovec, Jun 15 2020
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 2/p^s + 1/p^(2*s-1)). - Amiram Eldar, May 22 2025
Extensions
More terms from Jud McCranie
Comments