A048003 Triangular array T read by rows: T(h,k) = number of binary words of length h and maximal runlength k.
2, 2, 2, 2, 4, 2, 2, 8, 4, 2, 2, 14, 10, 4, 2, 2, 24, 22, 10, 4, 2, 2, 40, 46, 24, 10, 4, 2, 2, 66, 94, 54, 24, 10, 4, 2, 2, 108, 188, 118, 56, 24, 10, 4, 2, 2, 176, 370, 254, 126, 56, 24, 10, 4, 2, 2, 286, 720, 538, 278, 128, 56, 24, 10, 4, 2, 2, 464, 1388, 1126, 606, 286, 128, 56, 24, 10, 4, 2
Offset: 1
Examples
Rows: {2}; {2,2}; {2,4,2}; {2,8,4,2}; ... T(3,2) = 4, because there are 4 binary words of length 3 and maximal runlength 2: 001, 011, 100, 110. - _Alois P. Heinz_, Oct 29 2008
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
gf:= proc(n) 2*x^n/ (1-add(x^i, i=1..n-1))/ (1-add(x^j, j=1..n)) end: T:= (h,k)-> coeff(series(gf(k), x, h+1), x, h): seq(seq(T(h,k), k=1..h), h=1..13); # Alois P. Heinz, Oct 29 2008
-
Mathematica
gf[n_] := 2*x^n*(x^2-2*x+1) / (x^(2*n+1)-2*x^(n+2)-x^(n+1)+x^n+4*x^2-4*x+1); t[h_, k_] := Coefficient[ Series[ gf[k], {x, 0, h+1}], x, h]; Table[ Table[ t[h, k], {k, 1, h}], {h, 1, 13}] // Flatten (* Jean-François Alcover, Oct 07 2013, after Alois P. Heinz *)
Formula
G.f. of column k: 2*x^k / ((1-Sum_{i=1..k-1} x^i) * (1-Sum_{j=1..k} x^j)). - Alois P. Heinz, Oct 29 2008
T(n, k) = 0 if k < 1 or k > n, 2 if k = 1 or k = n, 2T(n-1, k) + T(n-1, k-1) - 2T(n-2, k-1) + T(n-k, k-1) - T(n-k-1, k) otherwise (cf. similar formula for A048004). This is a simplification of the L-shaped sum T(n-1, k) + ... + T(n-k, k) + ... + T(n-k,1). - Andrew Woods, Oct 11 2013
For n > 2k, T(n, n-k) = 2*A045623(k). - Andrew Woods, Oct 11 2013
Extensions
More terms from Alois P. Heinz, Oct 29 2008