A048055 Numbers k such that (sum of the nonprime proper divisors of k) - (sum of prime divisors of k) = k.
532, 945, 2624, 5704, 6536, 229648, 497696, 652970, 685088, 997408, 1481504, 11177984, 32869504, 52813084, 132612224, 224841856, 2140668416, 2404135424, 2550700288, 6469054976, 9367192064, 19266023936, 23414463358, 31381324288, 45812547584, 55620289024
Offset: 1
Examples
532 = 1 - 2 + 4 - 7 + 14 - 19 + 28 + 38 + 76 + 133 + 266.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..34 (terms <= 10^12)
- Donovan Johnson, 82 terms > 10^12.
- Peter Luschny, Zumkeller Numbers.
Programs
-
Haskell
import Data.List (partition) a048055 n = a048055_list !! (n-1) a048055_list = [x | x <- a002808_list, let (us,vs) = partition ((== 1) . a010051) $ a027751_row x, sum us + x == sum vs] -- Reinhard Zumkeller, Apr 05 2013
-
Maple
with(numtheory): A048055 := proc(n) local k; if sigma(n)=2*(n+add(k,k=select(isprime,divisors(n)))) then n else NULL fi end: seq(A048055(i),i=1..7000); # Peter Luschny, Dec 14 2009
-
Mathematica
zummableQ[n_] := DivisorSigma[1, n] == 2*(n + Total[Select[Divisors[n], PrimeQ]]); n = 2; A048055 = {}; While[n < 10^6, If[zummableQ[n], Print[n]; AppendTo[A048055, n]]; n++]; A048055 (* Jean-François Alcover, Dec 07 2011, after Peter Luschny *)
-
Python
from sympy import divisors, primefactors A048055 = [] for n in range(1,10**4): s = sum(divisors(n)) if not s % 2 and 2*n <= s and (s-2*n)/2 == sum(primefactors(n)): A048055.append(n) # Chai Wah Wu, Aug 20 2014
Extensions
a(15)-a(19) from Donovan Johnson, Dec 07 2008
a(20)-a(24) from Donovan Johnson, Jul 06 2010
a(25)-a(26) from Donovan Johnson, Feb 09 2012
Comments