cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048055 Numbers k such that (sum of the nonprime proper divisors of k) - (sum of prime divisors of k) = k.

Original entry on oeis.org

532, 945, 2624, 5704, 6536, 229648, 497696, 652970, 685088, 997408, 1481504, 11177984, 32869504, 52813084, 132612224, 224841856, 2140668416, 2404135424, 2550700288, 6469054976, 9367192064, 19266023936, 23414463358, 31381324288, 45812547584, 55620289024
Offset: 1

Views

Author

Keywords

Comments

From Peter Luschny, Dec 14 2009: (Start)
A term of this sequence is a Zumkeller number (A083207) since the set of its divisors can be partitioned into two disjoint parts so that the sums of the two parts are equal.
1 + sigma*(k) = sigma'(k) + k
sigma*(k) := Sum_{1 < d < k, d|k, d not prime}, (A060278),
sigma'(k) := Sum_{1 < d < k, d|k, d prime}, (A105221). (End)

Examples

			532 = 1 - 2 + 4 - 7 + 14 - 19 + 28 + 38 + 76 + 133 + 266.
		

Crossrefs

Programs

  • Haskell
    import Data.List (partition)
    a048055 n = a048055_list !! (n-1)
    a048055_list = [x | x <- a002808_list,
                   let (us,vs) = partition ((== 1) . a010051) $ a027751_row x,
                   sum us + x == sum vs]
    -- Reinhard Zumkeller, Apr 05 2013
    
  • Maple
    with(numtheory): A048055 := proc(n) local k;
    if sigma(n)=2*(n+add(k,k=select(isprime,divisors(n))))
    then n else NULL fi end: seq(A048055(i),i=1..7000);
    # Peter Luschny, Dec 14 2009
  • Mathematica
    zummableQ[n_] := DivisorSigma[1, n] == 2*(n + Total[Select[Divisors[n], PrimeQ]]); n = 2; A048055 = {}; While[n < 10^6, If[zummableQ[n], Print[n]; AppendTo[A048055, n]]; n++]; A048055 (* Jean-François Alcover, Dec 07 2011, after Peter Luschny *)
  • Python
    from sympy import divisors, primefactors
    A048055 = []
    for n in range(1,10**4):
        s = sum(divisors(n))
        if not s % 2 and 2*n <= s and (s-2*n)/2 == sum(primefactors(n)):
            A048055.append(n) # Chai Wah Wu, Aug 20 2014

Extensions

a(15)-a(19) from Donovan Johnson, Dec 07 2008
a(20)-a(24) from Donovan Johnson, Jul 06 2010
a(25)-a(26) from Donovan Johnson, Feb 09 2012