A048108 Numbers with at least as many non-unitary divisors (A048105) as unitary divisors (A034444).
8, 16, 24, 27, 32, 36, 40, 48, 54, 56, 64, 72, 80, 81, 88, 96, 100, 104, 108, 112, 120, 125, 128, 135, 136, 144, 152, 160, 162, 168, 176, 180, 184, 189, 192, 196, 200, 208, 216, 224, 225, 232, 240, 243, 248, 250, 252, 256, 264, 270, 272, 280, 288, 296, 297
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): for n from 1 to 800 do if 2^nops(ifactors(n)[2])<=tau(n)-2^nops(ifactors(n)[2]) then printf(`%d,`,n) fi; od:
-
Mathematica
Select[Range[300], Function[n, # <= DivisorSigma[0, n] - # &@ DivisorSum[n, 1 &, CoprimeQ[#, n/#] &]]] (* or *) Select[Range[300], Or[Count[#, p_ /; Last@ p >= 2] >= 2, Count[#, p_ /; Last@ p >= 3] == 1] &@ FactorInteger@ # &] (* Michael De Vlieger, Aug 01 2017 *)
-
PARI
is(n)=my(f=vecsort(factor(n)[,2],,4));#f && (f[1]>2 || (#f>1 && f[2]>1)) \\ Charles R Greathouse IV, Jun 07 2013
-
PARI
is(n)=factorback(factor(n)[,2]) > 2 \\ Charles R Greathouse IV, Aug 25 2016
Extensions
More terms from James Sellers, Jun 20 2000
Comments