cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048108 Numbers with at least as many non-unitary divisors (A048105) as unitary divisors (A034444).

Original entry on oeis.org

8, 16, 24, 27, 32, 36, 40, 48, 54, 56, 64, 72, 80, 81, 88, 96, 100, 104, 108, 112, 120, 125, 128, 135, 136, 144, 152, 160, 162, 168, 176, 180, 184, 189, 192, 196, 200, 208, 216, 224, 225, 232, 240, 243, 248, 250, 252, 256, 264, 270, 272, 280, 288, 296, 297
Offset: 1

Views

Author

Keywords

Comments

Numbers divisible by a prime cubed or two distinct primes squared. - Charles R Greathouse IV, Jun 07 2013
Equals A013929 \ A060687. The asymptotic density of this sequence is 1 - A059956 - A271971 = 0.1913171761... - Amiram Eldar, Nov 07 2020

Crossrefs

Complement of A048107.
Subsequence of A013929.

Programs

  • Maple
    with(numtheory): for n from 1 to 800 do if 2^nops(ifactors(n)[2])<=tau(n)-2^nops(ifactors(n)[2]) then printf(`%d,`,n) fi; od:
  • Mathematica
    Select[Range[300], Function[n, # <= DivisorSigma[0, n] - # &@ DivisorSum[n, 1 &, CoprimeQ[#, n/#] &]]] (* or *)
    Select[Range[300], Or[Count[#, p_ /; Last@ p >= 2] >= 2, Count[#, p_ /; Last@ p >= 3] == 1] &@ FactorInteger@ # &] (* Michael De Vlieger, Aug 01 2017 *)
  • PARI
    is(n)=my(f=vecsort(factor(n)[,2],,4));#f && (f[1]>2 || (#f>1 && f[2]>1)) \\ Charles R Greathouse IV, Jun 07 2013
    
  • PARI
    is(n)=factorback(factor(n)[,2]) > 2 \\ Charles R Greathouse IV, Aug 25 2016

Extensions

More terms from James Sellers, Jun 20 2000