cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A072066 Exceptional (or extraordinary) numbers: m such that A005179(m) < A037019(m).

Original entry on oeis.org

8, 16, 24, 32, 48, 64, 72, 80, 96, 108, 112, 128, 144, 160, 162, 176, 192, 208, 216, 224, 243, 256, 272, 288, 304, 320, 324, 352, 368, 384, 416, 432, 448, 464, 480, 486, 496, 512, 544, 576, 592, 608, 640, 648, 656, 672, 688, 704, 729, 736, 752, 768, 832, 848
Offset: 1

Views

Author

David Wasserman, Jun 12 2002

Keywords

Comments

Brown shows that this sequence has density 0 and is a subsequence of A013929. Mei shows that in fact it is a subsequence of A048108. - Charles R Greathouse IV, Jun 07 2013
Not a subsequence of A025487: 80, 108, 112, etc. are not the product of primorials. - Charles R Greathouse IV, Jun 07 2013
The product of any exceptional numbers is an exceptional number. - Thomas Ordowski, Jun 14 2015
Grost proved that p^k is in the sequence if and only if 2^p < prime(k), where p is a prime. - Thomas Ordowski, Jun 15 2015
Only very few of the initial terms, {108, 162, 243, 324, 486, 729, ...} are not multiples of 8. Note that the 2nd to 6th in this list (and certainly more) equal 81*k = (10 + 1/8)*a(n) with n = 2, 3, 4, 5, 7, ... - M. F. Hasler, Jun 15 2022

Examples

			m=8 is a term: A005179(8) = 2^3 * 3 = 24 < 30 = 2^1 * 3^1 * 5^1 = A037019(8). - _Jon E. Schoenfield_, Mar 18 2022
		

Crossrefs

Programs

Extensions

Links updated by Michel Marcus and M. F. Hasler, Oct 14 2014

A195086 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 2.

Original entry on oeis.org

8, 24, 27, 36, 40, 54, 56, 88, 100, 104, 120, 125, 135, 136, 152, 168, 180, 184, 189, 196, 225, 232, 248, 250, 252, 264, 270, 280, 296, 297, 300, 312, 328, 343, 344, 351, 375, 376, 378, 396, 408, 424, 440, 441, 450, 456, 459, 468, 472, 484, 488
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

From Amiram Eldar, Nov 07 2020: (Start)
Numbers whose powerful part (A057521) is either a cube of a prime (A030078) or a square of a squarefree semiprime (A085986).
The asymptotic density of this sequence is (6/Pi^2) * (Sum_{p prime} 1/(p^2*(p+1)) + Sum_{p=4} (-1)^(k+1)*(k-1)*P(k) + (Sum_{k>=2} (-1)^k*P(k))^2)/2 = 0.0963023158..., where P is the prime zeta function. (End)

Crossrefs

Programs

  • Haskell
    a195086 n = a195086_list !! (n-1)
    a195086_list = filter ((== 2) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[500],PrimeOmega[#]-PrimeNu[#]==2&]
  • PARI
    is(n)=bigomega(n)-omega(n)==2 \\ Charles R Greathouse IV, Sep 14 2015
    
  • PARI
    is(n)=my(f=factor(n)[,2]); vecsum(f)==#f+2 \\ Charles R Greathouse IV, Aug 01 2016
    

Formula

A001222(a(n)) - A001221(a(n)) = 2.
A046660(a(n)) = 2. - Reinhard Zumkeller, Nov 29 2015

A048107 Numbers k such that the number of unitary divisors of k (A034444) is larger than the number of non-unitary divisors of k (A048105).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Keywords

Comments

Numbers with at most one 2 and no 3s or higher in their prime exponents. - Charles R Greathouse IV, Aug 25 2016
A disjoint union of A005117 and A060687. The asymptotic density of this sequence is (6/Pi^2) * (1 + Sum_{p prime} 1/(p*(p+1))) = A059956 * (1 + A179119) = A059956 + A271971 = 0.8086828238... - Amiram Eldar, Nov 07 2020

Examples

			n = 420 = 2*2*3*5*7, 4 distinct prime factors, 24 divisors of which 16 are unitary and 8 are not; ud(n) > nud(n) and 2^(4+1) = 32 is larger than d, the number of divisors.
		

Crossrefs

Complement of A048108.
A072357 is a subsequence.

Programs

  • Mathematica
    Select[Range[500], 2^(1 + PrimeNu[#]) > DivisorSigma[0, #] &] (* G. C. Greubel, May 05 2017 *)
  • PARI
    is(n)=my(f=factor(n)[, 2], t); for(i=1, #f, if(f[i]>1, if(t||f[i]>2, return(0), t=1))); 1 \\ Charles R Greathouse IV, Sep 17 2015
    
  • PARI
    is(n)=n==1 || factorback(factor(n)[,2])<3 \\ Charles R Greathouse IV, Aug 25 2016

Formula

Numbers for which 2^(r(n)+1) > d(n), where r = A001221, d = A000005.

A048106 Number of unitary divisors of n (A034444) - number of non-unitary divisors of n (A048105).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 0, 1, 4, 2, 2, 2, 4, 4, -1, 2, 2, 2, 2, 4, 4, 2, 0, 1, 4, 0, 2, 2, 8, 2, -2, 4, 4, 4, -1, 2, 4, 4, 0, 2, 8, 2, 2, 2, 4, 2, -2, 1, 2, 4, 2, 2, 0, 4, 0, 4, 4, 2, 4, 2, 4, 2, -3, 4, 8, 2, 2, 4, 8, 2, -4, 2, 4, 2, 2, 4, 8, 2, -2, -1, 4, 2, 4, 4, 4, 4, 0, 2, 4, 4, 2, 4, 4, 4, -4, 2, 2, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^(1 + PrimeNu@ n) - DivisorSigma[0, n], {n, 99}] (* Michael De Vlieger, Aug 01 2017 *)
  • PARI
    A048106(n) = (2^(1+omega(n)) - numdiv(n)); \\ Antti Karttunen, May 25 2017
    
  • Python
    from sympy import divisor_count, primefactors
    def a(n): return 1 if n==1 else 2**(1 + len(primefactors(n))) - divisor_count(n) # Indranil Ghosh, May 25 2017

Formula

a(n) = 2^(1+omega(n)) - d(n) = 2^(1+A001221(n)) - A000005(n).
a(n) = -Sum_{ d divides n } (-1)^mu(d). - Vladeta Jovovic, Jan 24 2002
From Amiram Eldar, Dec 09 2022: (Start)
a(n) > 0 iff n is in A048107.
a(n) < 0 iff n is in A048111.
a(n) <= 0 iff n is in A048108.
a(n) = 0 iff n is in A048109.
Dirichlet g.f: zeta(s)^2*(2/zeta(2*s) - 1).
Sum_{k=1..n} a(k) ~ (12/Pi^2 - 1)*n*log(n) + ((12/Pi^2-1)*(2*gamma-1) - (24/Pi^2)*zeta'(2)/zeta(2))*n, where gamma is Euler's constant (A001620). (End)

A062171 Number of non-unitary divisors of n (A048105) > number of distinct prime divisors of n (A001221).

Original entry on oeis.org

8, 16, 24, 27, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 81, 84, 88, 90, 96, 100, 104, 108, 112, 120, 125, 126, 128, 132, 135, 136, 140, 144, 150, 152, 156, 160, 162, 168, 176, 180, 184, 189, 192, 196, 198, 200, 204, 208, 216, 220, 224, 225, 228, 232, 234, 240
Offset: 1

Views

Author

Jason Earls, Aug 28 2001

Keywords

Crossrefs

Programs

  • PARI
    nud(n) = numdiv(n)-2^omega(n); j=[]; for(n=1,500, if(nud(n)>omega(n),j=concat(j,n))); j
    
  • PARI
    is(n)=my(f=factor(n)[,2]); prod(i=1,#f,f[i]+1)>2^#f+#f \\ Charles R Greathouse IV, Sep 18 2015

Extensions

Offset corrected by Charles R Greathouse IV, Sep 18 2015
Showing 1-5 of 5 results.