cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A046660 Excess of n = number of prime divisors (with multiplicity) - number of prime divisors (without multiplicity).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 1, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3, 1).
a(n) = 0 for squarefree n.
A162511(n) = (-1)^a(n). - Reinhard Zumkeller, Jul 08 2009
a(n) = the number of divisors of n that are each a composite power of a prime. - Leroy Quet, Dec 02 2009
a(A005117(n)) = 0; a(A060687(n)) = 1; a(A195086(n)) = 2; a(A195087(n)) = 3; a(A195088(n)) = 4; a(A195089(n)) = 5; a(A195090(n)) = 6; a(A195091(n)) = 7; a(A195092(n)) = 8; a(A195093(n)) = 9; a(A195069(n)) = 10. - Reinhard Zumkeller, Nov 29 2015

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, pp. 51-52.

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Primes.Factorisation (factorise)
    a046660 n = sum es - length es where es = snd $ unzip $ factorise n
    -- Reinhard Zumkeller, Nov 28 2015, Jan 09 2013
    
  • Maple
    with(numtheory); A046660 := n -> bigomega(n)-nops(factorset(n)):
    seq(A046660(k), k=1..100); # Wesley Ivan Hurt, Oct 27 2013
    # Or:
    with(NumberTheory): A046660 := n -> NumberOfPrimeFactors(n) - NumberOfPrimeFactors(n, 'distinct'):  # Peter Luschny, Jul 14 2023
  • Mathematica
    Table[PrimeOmega[n] - PrimeNu[n], {n, 50}] (* or *) muf[n_] := Module[{fi = FactorInteger[n]}, Total[Transpose[fi][[2]]] - Length[fi]]; Array[muf, 50] (* Harvey P. Dale, Sep 07 2011. The second program is several times faster than the first program for generating large numbers of terms. *)
  • PARI
    a(n)=bigomega(n)-omega(n) \\ Charles R Greathouse IV, Nov 14 2012
    
  • PARI
    a(n)=my(f=factor(n)[,2]); vecsum(f)-#f \\ Charles R Greathouse IV, Aug 01 2016
    
  • Python
    from sympy import factorint
    def A046660(n): return sum(e-1 for e in factorint(n).values()) # Chai Wah Wu, Jul 18 2023

Formula

a(n) = Omega(n) - omega(n) = A001222(n) - A001221(n).
Additive with a(p^e) = e - 1.
a(n) = Sum_{k = 1..A001221(n)} (A124010(n,k) - 1). - Reinhard Zumkeller, Jan 09 2013
G.f.: Sum_{p prime, k>=2} x^(p^k)/(1 - x^(p^k)). - Ilya Gutkovskiy, Jan 06 2017
Asymptotic mean: lim_{m->oo} (1/m) Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p*(p-1)) = 0.773156... (A136141). - Amiram Eldar, Jul 28 2020
a(n) = Sum_{p|n} A286563(n/p,p), where p is prime. - Ridouane Oudra, Sep 13 2023
a(n) = A275812(n) - A056170(n). - Amiram Eldar, Jan 09 2024
a(n) = A001222(A003557(n)). - Peter Munn, Feb 06 2024

Extensions

More terms from David W. Wilson

A195087 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 3.

Original entry on oeis.org

16, 48, 72, 80, 81, 108, 112, 162, 176, 200, 208, 240, 272, 304, 336, 360, 368, 392, 405, 464, 496, 500, 504, 528, 540, 560, 567, 592, 600, 624, 625, 656, 675, 688, 752, 756, 792, 810, 816, 848, 880, 891, 900, 912, 936, 944, 968, 976
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (Sum_{p prime} 1/(p^3*(p+1)) + Sum_{p != q primes} 1/(p^2*(p+1)*q*(q+1)) + Sum_{p < q < r primes} 1/(p*(p+1)*q*(q+1)*r*(r+1)))/zeta(2) = 0.04761... . - Amiram Eldar, Sep 03 2022

Crossrefs

Programs

  • Haskell
    a195087 n = a195087_list !! (n-1)
    a195087_list = filter ((== 3) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[1000],PrimeOmega[#]-PrimeNu[#]==3&]
  • PARI
    is(n)=bigomega(n)-omega(n)==3 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A001222(a(n)) - A001221(a(n)) = 3.
A046660(a(n)) = 3. - Reinhard Zumkeller, Nov 29 2015

A195089 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 5.

Original entry on oeis.org

64, 192, 288, 320, 432, 448, 648, 704, 729, 800, 832, 960, 972, 1088, 1216, 1344, 1440, 1458, 1472, 1568, 1856, 1984, 2000, 2016, 2112, 2160, 2240, 2368, 2400, 2496, 2624, 2752, 3008, 3024, 3168, 3240, 3264, 3392, 3520, 3600, 3645, 3648, 3744, 3776, 3872, 3904
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0118439..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195089 n = a195089_list !! (n-1)
    a195089_list = filter ((== 5) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[4000],PrimeOmega[#]-PrimeNu[#]==5&]
  • PARI
    is(n)=bigomega(n)-omega(n)==5 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 5. - Reinhard Zumkeller, Nov 29 2015

A195091 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 7.

Original entry on oeis.org

256, 768, 1152, 1280, 1728, 1792, 2592, 2816, 3200, 3328, 3840, 3888, 4352, 4864, 5376, 5760, 5832, 5888, 6272, 6561, 7424, 7936, 8000, 8064, 8448, 8640, 8748, 8960, 9472, 9600, 9984, 10496, 11008, 12032, 12096, 12672, 12960, 13056, 13122, 13568
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0029589..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195091 n = a195091_list !! (n-1)
    a195091_list = filter ((== 7) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[14000],PrimeOmega[#]-PrimeNu[#]==7&]
  • PARI
    is(n)=bigomega(n)-omega(n)==7 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 7. - Reinhard Zumkeller, Nov 29 2015

A257851 Triangle read by rows: row n contains the first n+1 numbers m such that A046660(m) = n.

Original entry on oeis.org

1, 4, 9, 8, 24, 27, 16, 48, 72, 80, 32, 96, 144, 160, 216, 64, 192, 288, 320, 432, 448, 128, 384, 576, 640, 864, 896, 1296, 256, 768, 1152, 1280, 1728, 1792, 2592, 2816, 512, 1536, 2304, 2560, 3456, 3584, 5184, 5632, 6400, 1024, 3072, 4608, 5120, 6912, 7168, 10368, 11264, 12800, 13312
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 29 2015

Keywords

Comments

At the suggestion of Michel Marcus's remark in Carlos Eduardo Olivieri's A261256.

Examples

			0:    1
1:    4     9
2:    8    24      27
3:   16    48      72    80
4:   32    96     144   160     216
5:   64   192     288   320     432   448
6:  128   384     576   640     864   896    1296
7:  256   768    1152  1280    1728  1792    2592   2816
8:  512  1536    2304  2560    3456  3584    5184   5632    6400
--  ------------------------------------------------------------
0:  1
1:  2^2   3^2
2:  2^3 2^3*3     3^3
3:  2^4 2^4*3 2^3*3^2 2^4*5
4:  2^5 2^5*3 2^4*3^2 2^5*5 2^3*3^3
5:  2^6 2^6*3 2^5*3^2 2^6*5 2^4*3^3 2^6*7
6:  2^7 2^7*3 2^6*3^2 2^7*5 2^5*3^3 2^7*7 2^4*3^4
7:  2^8 2^8*3 2^7*3^2 2^8*5 2^6*3^3 2^8*7 2^5*3^4 2^8*11
8:  2^9 2^9*3 2^8*3^2 2^9*5 2^7*3^3 2^9*7 2^6*3^4 2^9*11 2^8*5^2
		

Crossrefs

Programs

  • Haskell
    a257851 n k = a257851_tabl !! n !! k
    a257851_row n = a257851_tabl !! n
    a257851_tabl = map
       (\x -> take (x + 1) $ filter ((== x) . a046660) [1..]) [0..]
  • Mathematica
    T[n_] := Reap[For[m = 1; k = 1, k <= n+1, If[PrimeOmega[m] - PrimeNu[m] == n, Sow[m]; k++]; m++]][[2, 1]];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Sep 17 2021 *)

Formula

T(n,0) = A151821(n+1);
T(n,n-1) = A261256(n) for n > 0;
T(n,n) = A264959(n).
T(0,0) = A005117(1);
T(1,k) = A060687(k+1), k = 0..1;
T(2,k) = A195086(k+1), k = 0..2;
T(3,k) = A195087(k+1), k = 0..3;
T(4,k) = A195088(k+1), k = 0..4;
T(5,k) = A195089(k+1), k = 0..5;
T(6,k) = A195090(k+1), k = 0..6;
T(7,k) = A195091(k+1), k = 0..7;
T(8,k) = A195092(k+1), k = 0..8;
T(9,k) = A195093(k+1), k = 0..9;
T(10,k) = A195069(k+1), k = 0..10.

A261256 Let S_k denote the sequence of numbers j such that A001222(j) - A001221(j) = k. Then a(n) is the n-th term of S_n.

Original entry on oeis.org

4, 24, 72, 160, 432, 896, 2592, 5632, 12800, 26624, 61440, 124416, 278528, 622592, 1376256, 2949120, 5971968, 12058624, 25690112, 60817408, 130023424, 262144000, 528482304, 1107296256, 2264924160, 4586471424, 9395240960, 19864223744, 40265318400, 83751862272
Offset: 1

Views

Author

Keywords

Comments

S_0 would correspond to the squarefree numbers (A005117), that is, numbers j such that A001222(j) = A001221(j). Note that S_0 is excluded from the scheme. - Michel Marcus, Sep 21 2015

Examples

			For n = 1, S_1 = {4, 9, 12, 18, 20, 25, ...}, so a(1) = S_1(1) = 4.
For n = 2, S_2 = {8, 24, 27, 36, 40, 54, ...}, so a(2) = S_2(2) = 24.
For n = 3, S_3 = {16, 48, 72, 80, 81, 108, ...}, so a(3) = S_3(3) = 72.
For n = 4, S_4 = {32, 96, 144, 160, 216, 224, ...}, so a(4) = S_4(4) = 160.
For n = 5, S_5 = {64, 192, 288, 320, 432, 448, ...}, so a(5) = S_5(5) = 432.
		

Crossrefs

Programs

  • Haskell
    a261256 n = a257851 n (n - 1)  -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    OutSeq = {}; For[i = 1, i <= 16, i++, l = Select[Range[10^2*2^i], PrimeOmega[#] - PrimeNu[#] == i &]; AppendTo[OutSeq, l[[i]]]]; OutSeq
  • PARI
    a(n) = {ik = 1; nbk = 0; while (nbk != n, ik++; if (bigomega(ik) == omega(ik) + n, nbk++);); ik;} \\ Michel Marcus, Oct 06 2015
    

Formula

a(n+1) > 2*a(n).
a(n) >= 2^prime(n) for n < 5.
a(n) = A257851(n,n-1). - Reinhard Zumkeller, Nov 29 2015
a(n) = b(n)*2^(n+1), where b(n) consists of the values of k/2^excess(k) over odd k, sorted in ascending order. In particular, a(n) <= prime(n)*2^(n+1), with equality only when n = 2. - Charlie Neder, Jan 31 2019

Extensions

a(17)-a(21) from Jon E. Schoenfield, Sep 12 2015
More terms from Charlie Neder, Jan 31 2019

A195088 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 4.

Original entry on oeis.org

32, 96, 144, 160, 216, 224, 243, 324, 352, 400, 416, 480, 486, 544, 608, 672, 720, 736, 784, 928, 992, 1000, 1008, 1056, 1080, 1120, 1184, 1200, 1215, 1248, 1312, 1376, 1504, 1512, 1584, 1620, 1632, 1696, 1701, 1760, 1800, 1824, 1872, 1888, 1936, 1952
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0237194..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195088 n = a195088_list !! (n-1)
    a195088_list = filter ((== 4) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[2000],PrimeOmega[#]-PrimeNu[#]==4&]
  • PARI
    is(n)=bigomega(n)-omega(n)==4 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 4. - Reinhard Zumkeller, Nov 29 2015

A195090 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 6.

Original entry on oeis.org

128, 384, 576, 640, 864, 896, 1296, 1408, 1600, 1664, 1920, 1944, 2176, 2187, 2432, 2688, 2880, 2916, 2944, 3136, 3712, 3968, 4000, 4032, 4224, 4320, 4374, 4480, 4736, 4800, 4992, 5248, 5504, 6016, 6048, 6336, 6480, 6528, 6784
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0059189..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195090 n = a195090_list !! (n-1)
    a195090_list = filter ((== 6) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Maple
    op(select(n->bigomega(n)-nops(factorset(n))=6, [$1..6784])); # Paolo P. Lava, Jul 03 2018
  • Mathematica
    Select[Range[7000],PrimeOmega[#]-PrimeNu[#]==6&]
  • PARI
    is(n)=bigomega(n)-omega(n)==6 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 6. - Reinhard Zumkeller, Nov 29 2015

A195092 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 8.

Original entry on oeis.org

512, 1536, 2304, 2560, 3456, 3584, 5184, 5632, 6400, 6656, 7680, 7776, 8704, 9728, 10752, 11520, 11664, 11776, 12544, 14848, 15872, 16000, 16128, 16896, 17280, 17496, 17920, 18944, 19200, 19683, 19968, 20992, 22016, 24064, 24192
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0014793..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195092 n = a195092_list !! (n-1)
    a195092_list = filter ((== 8) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[25000],PrimeOmega[#]-PrimeNu[#]==8&]
  • PARI
    is(n)=bigomega(n)-omega(n)==8 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 8. - Reinhard Zumkeller, Nov 29 2015

A195093 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 9.

Original entry on oeis.org

1024, 3072, 4608, 5120, 6912, 7168, 10368, 11264, 12800, 13312, 15360, 15552, 17408, 19456, 21504, 23040, 23328, 23552, 25088, 29696, 31744, 32000, 32256, 33792, 34560, 34992, 35840, 37888, 38400, 39936, 41984, 44032, 48128, 48384
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0007396..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195093 n = a195093_list !! (n-1)
    a195093_list = filter ((== 9) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[50000],PrimeOmega[#]-PrimeNu[#]==9&]
  • PARI
    is(n)=bigomega(n)-omega(n)==9 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 9. - Reinhard Zumkeller, Nov 29 2015
Showing 1-10 of 13 results. Next