A297167 a(1) = 0, for n > 1, a(n) = -1 + the excess of n (A046660) + the index of the largest prime factor (A061395).
0, 0, 1, 1, 2, 1, 3, 2, 2, 2, 4, 2, 5, 3, 2, 3, 6, 2, 7, 3, 3, 4, 8, 3, 3, 5, 3, 4, 9, 2, 10, 4, 4, 6, 3, 3, 11, 7, 5, 4, 12, 3, 13, 5, 3, 8, 14, 4, 4, 3, 6, 6, 15, 3, 4, 5, 7, 9, 16, 3, 17, 10, 4, 5, 5, 4, 18, 7, 8, 3, 19, 4, 20, 11, 3, 8, 4, 5, 21, 5, 4, 12, 22, 4, 6, 13, 9, 6, 23, 3, 5, 9, 10, 14, 7, 5, 24, 4, 5, 4, 25, 6, 26, 7, 3
Offset: 1
Keywords
Links
Programs
-
Mathematica
Array[-1 + PrimeOmega@ # - PrimeNu@ # + PrimePi[FactorInteger[#][[-1, 1]]] /. k_ /; k < 0 -> 0 &, 105] (* or, slightly faster *) Array[-1 + Length@ # - Length@ Union@ # + PrimePi@ Last@ # /. k_ /; k < 0 -> 0 &@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, #] &@ FactorInteger[#] &, 105] (* Michael De Vlieger, Mar 13 2018 *)
-
PARI
A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); \\ After M. F. Hasler's code for A006530. A252464(n) = if(1==n, 0, (bigomega(n) + A061395(n) - 1)); A297167(n) = (A252464(n) - omega(n)); \\ Or just as: A297167(n) = if(1==n, 0, (A061395(n) + (bigomega(n)-omega(n)) - 1)); \\ Antti Karttunen, Mar 13 2018
-
Python
from sympy import factorint, primepi def A297167(n): return primepi(max(f:=factorint(n)))+sum(e-1 for e in f.values())-1 if n>1 else 0 # Chai Wah Wu, Jul 29 2023
-
Scheme
(define (A297167 n) (- (A252464 n) (A001221 n)))
Formula
Extensions
Name changed, original equivalent definition is the first entry in the Formula section - Antti Karttunen, Mar 13 2018
Comments