cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A340818 Numerators of a sequence of fractions converging to A340820, the asymptotic density of numbers whose excess of prime divisors (A046660) is even (A162644).

Original entry on oeis.org

5, 7, 41, 3, 197, 229, 5827, 277, 1157, 8382, 268049, 94175911, 964941119, 1929224113, 31529606831, 835346466959, 3398377571053, 52665885581009, 119955940157647877, 34063199364211668943, 315047077264055066629, 199089493729235251718903, 47411489829747180146759
Offset: 1

Views

Author

Amiram Eldar, Jan 22 2021

Keywords

Comments

Let Omega_n(k) be the number of prime divisors of k not exceeding prime(n) counted with multiplicity, and omega_n(k) the number of distinct prime divisors of k not exceeding prime(n). Then, f(n) = a(n)/A340819(n) is the asymptotic density of numbers k such that Omega_n(k) == omega_n(k) (mod 2).
Equivalently, f(n) is the asymptotic density of numbers k such that A046660(d_n(k)) is even, where d_n(k) is the largest prime(n)-smooth divisor of k.

Examples

			The sequence of fractions begins with 5/6, 7/9, 41/54, 3/4, 197/264, 229/308, 5827/7854, 277/374, 1157/1564, 8382/11339, ...
For n=1, Omega_2(k)-omega_2(k) is even for either odd k (A005408), or even k whose binary representation ends in an odd number of zeros (A036554). The disjoint union of these 2 sequences has an asymptotic density 1/2 + 1/3 = 5/6.
		

Crossrefs

Cf. A005408, A036554, A046660, A162644, A340819 (denominators), A340820.

Programs

  • Mathematica
    d[p_] := 1/(p*(p + 1)); delta[n_] := delta[n] = d[Prime[n]]; f[0] = 1; f[n_] := f[n] = f[n - 1] * (1 - delta[n]) + (1 - f[n - 1]) * delta[n]; Numerator @ Array[f, 30]

Formula

Let delta(n) = 1/(prime(n)*(prime(n)+1)) be the asymptotic density of numbers whose prime(n)-adic valuation is positive and even. Let f(0) = 1. Then, f(n) = f(n-1)*(1 - delta(n)) + (1 - f(n))*delta(n).
Limit_{n->oo} f(n) = 0.73584... (A340820).

A340820 Decimal expansion of (1 + Product_{p prime} (1 - 2/(p*(p+1))))/2.

Original entry on oeis.org

7, 3, 5, 8, 4, 0, 3, 0, 6, 8, 0, 6, 4, 9, 8, 9, 3, 4, 0, 3, 7, 6, 1, 7, 8, 1, 6, 5, 4, 0, 2, 4, 1, 0, 4, 3, 7, 1, 2, 9, 6, 3, 1, 9, 1, 0, 0, 3, 4, 9, 3, 4, 4, 1, 8, 1, 7, 8, 6, 8, 6, 2, 7, 7, 0, 8, 8, 6, 6, 0, 5, 8, 3, 7, 9, 8, 4, 1, 3, 7, 2, 0, 4, 8, 1, 0, 5
Offset: 0

Views

Author

Amiram Eldar, Jan 22 2021

Keywords

Comments

The asymptotic density of numbers k such that A046660(k) is even (A162644).
Detrey et al. (2016) calculated 1000 decimal digits of this constant.

Examples

			0.735840306806498934037617816540241043712963191003493...
		

Crossrefs

Programs

  • PARI
    (prodeulerrat(1 - 2/(p*(p+1))) + 1)/2

Formula

Equals (1 + A065472/zeta(2))/2.
Equals lim_{n->oo} A340818(n)/A340819(n).

A356094 a(n) = denominator((prime(n)-1)/prime(n)#), where prime(n)# = A002110(n) is the n-th primorial.

Original entry on oeis.org

2, 3, 15, 35, 231, 5005, 255255, 1616615, 10140585, 462120945, 6685349671, 1236789689135, 30425026352721, 311494317420715, 13367169186706335, 1253429172199617105, 33151040519900217915, 3909612711980232366109, 119065478046670712967865, 7970583287524270870963077
Offset: 1

Views

Author

Amiram Eldar, Jul 26 2022

Keywords

Comments

See A356093 for details.

Crossrefs

Cf. A002110, A356093 (numerators).
Similar sequences: A038111, A338560, A340819, A341432, A342451, A342480.

Programs

  • Mathematica
    primorial[n_] := Product[Prime[i], {i, 1, n}]; Denominator[Table[(Prime[i] - 1)/primorial[i], {i, 1, 20}]]
  • PARI
    a(n) = denominator((prime(n)-1)/factorback(primes(n))); \\ Michel Marcus, Jul 26 2022
    
  • Python
    from math import gcd
    from sympy import primorial, prime
    def A356094(n): return (p:=primorial(n))//gcd(p,prime(n)-1) # Chai Wah Wu, Jul 26 2022
Showing 1-3 of 3 results.