cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A340819 Denominators of a sequence of fractions converging to A340820, the asymptotic density of numbers whose excess of prime divisors (A046660) is even (A162644).

Original entry on oeis.org

6, 9, 54, 4, 264, 308, 7854, 374, 1564, 11339, 362848, 127541072, 1307295988, 2614591976, 42742894912, 1132686715168, 4608863185856, 71437379380768, 162734350229389504, 46216555465146619136, 427503138052606227008, 270181983249247135469056, 64347502466822129824768
Offset: 1

Views

Author

Amiram Eldar, Jan 22 2021

Keywords

Comments

See A340818 for details.

Crossrefs

Cf. A046660, A162644, A340818 (numerators), A340820.

Programs

  • Mathematica
    d[p_] := 1/(p*(p + 1)); delta[n_] := delta[n] = d[Prime[n]]; f[0] = 1; f[n_] := f[n] = f[n - 1] * (1 - delta[n]) + (1 - f[n - 1]) * delta[n]; Denominator @ Array[f, 30]

A340820 Decimal expansion of (1 + Product_{p prime} (1 - 2/(p*(p+1))))/2.

Original entry on oeis.org

7, 3, 5, 8, 4, 0, 3, 0, 6, 8, 0, 6, 4, 9, 8, 9, 3, 4, 0, 3, 7, 6, 1, 7, 8, 1, 6, 5, 4, 0, 2, 4, 1, 0, 4, 3, 7, 1, 2, 9, 6, 3, 1, 9, 1, 0, 0, 3, 4, 9, 3, 4, 4, 1, 8, 1, 7, 8, 6, 8, 6, 2, 7, 7, 0, 8, 8, 6, 6, 0, 5, 8, 3, 7, 9, 8, 4, 1, 3, 7, 2, 0, 4, 8, 1, 0, 5
Offset: 0

Views

Author

Amiram Eldar, Jan 22 2021

Keywords

Comments

The asymptotic density of numbers k such that A046660(k) is even (A162644).
Detrey et al. (2016) calculated 1000 decimal digits of this constant.

Examples

			0.735840306806498934037617816540241043712963191003493...
		

Crossrefs

Programs

  • PARI
    (prodeulerrat(1 - 2/(p*(p+1))) + 1)/2

Formula

Equals (1 + A065472/zeta(2))/2.
Equals lim_{n->oo} A340818(n)/A340819(n).

A356093 a(n) = numerator((prime(n)-1)/prime(n)#), where prime(n)# = A002110(n) is the n-th primorial.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 8, 3, 1, 2, 1, 6, 4, 1, 1, 2, 1, 2, 1, 1, 12, 1, 1, 4, 16, 10, 1, 1, 18, 8, 3, 1, 4, 1, 2, 5, 2, 27, 1, 2, 1, 6, 1, 32, 14, 3, 1, 1, 1, 2, 4, 1, 8, 25, 128, 1, 2, 9, 2, 4, 1, 2, 3, 1, 4, 2, 1, 8, 1, 2, 16, 1, 1, 2, 9, 1, 2, 6, 40, 4, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 26 2022

Keywords

Comments

f(n) = a(n)/A356094(n) is the asymptotic density of numbers k such that prime(n) = A053669(k) is the smallest prime not dividing k.
The asymptotic mean of A053669 is 2.9200509773... (A249270) which is the weighted mean of the primes with f(n) as weights. The corresponding asymptotic standard deviation, which can be evaluated from the second raw moment Sum_{n>=1} f(n) * prime(n)^2, is 2.8013781465... .

Examples

			Fractions begin with 1/2, 1/3, 2/15, 1/35, 1/231, 2/5005, 8/255255, 3/1616615, 1/10140585, 2/462120945, ...
		

Crossrefs

Cf. A002110, A006093, A039787, A053669, A249270, A356094 (denominators).
Similar sequences: A038110, A338559, A340818, A341431, A342450, A342479.

Programs

  • Mathematica
    primorial[n_] := Product[Prime[i], {i, 1, n}]; Numerator[Table[(Prime[i] - 1)/primorial[i], {i, 1, 100}]]
  • PARI
    a(n) = numerator((prime(n)-1)/factorback(primes(n))); \\ Michel Marcus, Jul 26 2022
    
  • Python
    from math import gcd
    from sympy import prime, primorial
    def A356093(n): return (p:=prime(n)-1)//gcd(p,primorial(n)) # Chai Wah Wu, Jul 26 2022

Formula

a(n) = 1 iff prime(n) is in A039787.
Let f(n) = a(n)/A356094(n):
f(n) = A006093(n)/A002110(n).
Sum_{n>=1} f(n) = 1.
Sum_{n>=1} f(n) * prime(n) = A249270.
Showing 1-3 of 3 results.