cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A046660 Excess of n = number of prime divisors (with multiplicity) - number of prime divisors (without multiplicity).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 1, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3, 1).
a(n) = 0 for squarefree n.
A162511(n) = (-1)^a(n). - Reinhard Zumkeller, Jul 08 2009
a(n) = the number of divisors of n that are each a composite power of a prime. - Leroy Quet, Dec 02 2009
a(A005117(n)) = 0; a(A060687(n)) = 1; a(A195086(n)) = 2; a(A195087(n)) = 3; a(A195088(n)) = 4; a(A195089(n)) = 5; a(A195090(n)) = 6; a(A195091(n)) = 7; a(A195092(n)) = 8; a(A195093(n)) = 9; a(A195069(n)) = 10. - Reinhard Zumkeller, Nov 29 2015

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, pp. 51-52.

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Primes.Factorisation (factorise)
    a046660 n = sum es - length es where es = snd $ unzip $ factorise n
    -- Reinhard Zumkeller, Nov 28 2015, Jan 09 2013
    
  • Maple
    with(numtheory); A046660 := n -> bigomega(n)-nops(factorset(n)):
    seq(A046660(k), k=1..100); # Wesley Ivan Hurt, Oct 27 2013
    # Or:
    with(NumberTheory): A046660 := n -> NumberOfPrimeFactors(n) - NumberOfPrimeFactors(n, 'distinct'):  # Peter Luschny, Jul 14 2023
  • Mathematica
    Table[PrimeOmega[n] - PrimeNu[n], {n, 50}] (* or *) muf[n_] := Module[{fi = FactorInteger[n]}, Total[Transpose[fi][[2]]] - Length[fi]]; Array[muf, 50] (* Harvey P. Dale, Sep 07 2011. The second program is several times faster than the first program for generating large numbers of terms. *)
  • PARI
    a(n)=bigomega(n)-omega(n) \\ Charles R Greathouse IV, Nov 14 2012
    
  • PARI
    a(n)=my(f=factor(n)[,2]); vecsum(f)-#f \\ Charles R Greathouse IV, Aug 01 2016
    
  • Python
    from sympy import factorint
    def A046660(n): return sum(e-1 for e in factorint(n).values()) # Chai Wah Wu, Jul 18 2023

Formula

a(n) = Omega(n) - omega(n) = A001222(n) - A001221(n).
Additive with a(p^e) = e - 1.
a(n) = Sum_{k = 1..A001221(n)} (A124010(n,k) - 1). - Reinhard Zumkeller, Jan 09 2013
G.f.: Sum_{p prime, k>=2} x^(p^k)/(1 - x^(p^k)). - Ilya Gutkovskiy, Jan 06 2017
Asymptotic mean: lim_{m->oo} (1/m) Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p*(p-1)) = 0.773156... (A136141). - Amiram Eldar, Jul 28 2020
a(n) = Sum_{p|n} A286563(n/p,p), where p is prime. - Ridouane Oudra, Sep 13 2023
a(n) = A275812(n) - A056170(n). - Amiram Eldar, Jan 09 2024
a(n) = A001222(A003557(n)). - Peter Munn, Feb 06 2024

Extensions

More terms from David W. Wilson

A195086 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 2.

Original entry on oeis.org

8, 24, 27, 36, 40, 54, 56, 88, 100, 104, 120, 125, 135, 136, 152, 168, 180, 184, 189, 196, 225, 232, 248, 250, 252, 264, 270, 280, 296, 297, 300, 312, 328, 343, 344, 351, 375, 376, 378, 396, 408, 424, 440, 441, 450, 456, 459, 468, 472, 484, 488
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

From Amiram Eldar, Nov 07 2020: (Start)
Numbers whose powerful part (A057521) is either a cube of a prime (A030078) or a square of a squarefree semiprime (A085986).
The asymptotic density of this sequence is (6/Pi^2) * (Sum_{p prime} 1/(p^2*(p+1)) + Sum_{p=4} (-1)^(k+1)*(k-1)*P(k) + (Sum_{k>=2} (-1)^k*P(k))^2)/2 = 0.0963023158..., where P is the prime zeta function. (End)

Crossrefs

Programs

  • Haskell
    a195086 n = a195086_list !! (n-1)
    a195086_list = filter ((== 2) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[500],PrimeOmega[#]-PrimeNu[#]==2&]
  • PARI
    is(n)=bigomega(n)-omega(n)==2 \\ Charles R Greathouse IV, Sep 14 2015
    
  • PARI
    is(n)=my(f=factor(n)[,2]); vecsum(f)==#f+2 \\ Charles R Greathouse IV, Aug 01 2016
    

Formula

A001222(a(n)) - A001221(a(n)) = 2.
A046660(a(n)) = 2. - Reinhard Zumkeller, Nov 29 2015

A195087 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 3.

Original entry on oeis.org

16, 48, 72, 80, 81, 108, 112, 162, 176, 200, 208, 240, 272, 304, 336, 360, 368, 392, 405, 464, 496, 500, 504, 528, 540, 560, 567, 592, 600, 624, 625, 656, 675, 688, 752, 756, 792, 810, 816, 848, 880, 891, 900, 912, 936, 944, 968, 976
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (Sum_{p prime} 1/(p^3*(p+1)) + Sum_{p != q primes} 1/(p^2*(p+1)*q*(q+1)) + Sum_{p < q < r primes} 1/(p*(p+1)*q*(q+1)*r*(r+1)))/zeta(2) = 0.04761... . - Amiram Eldar, Sep 03 2022

Crossrefs

Programs

  • Haskell
    a195087 n = a195087_list !! (n-1)
    a195087_list = filter ((== 3) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[1000],PrimeOmega[#]-PrimeNu[#]==3&]
  • PARI
    is(n)=bigomega(n)-omega(n)==3 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A001222(a(n)) - A001221(a(n)) = 3.
A046660(a(n)) = 3. - Reinhard Zumkeller, Nov 29 2015

A195089 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 5.

Original entry on oeis.org

64, 192, 288, 320, 432, 448, 648, 704, 729, 800, 832, 960, 972, 1088, 1216, 1344, 1440, 1458, 1472, 1568, 1856, 1984, 2000, 2016, 2112, 2160, 2240, 2368, 2400, 2496, 2624, 2752, 3008, 3024, 3168, 3240, 3264, 3392, 3520, 3600, 3645, 3648, 3744, 3776, 3872, 3904
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0118439..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195089 n = a195089_list !! (n-1)
    a195089_list = filter ((== 5) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[4000],PrimeOmega[#]-PrimeNu[#]==5&]
  • PARI
    is(n)=bigomega(n)-omega(n)==5 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 5. - Reinhard Zumkeller, Nov 29 2015

A195091 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 7.

Original entry on oeis.org

256, 768, 1152, 1280, 1728, 1792, 2592, 2816, 3200, 3328, 3840, 3888, 4352, 4864, 5376, 5760, 5832, 5888, 6272, 6561, 7424, 7936, 8000, 8064, 8448, 8640, 8748, 8960, 9472, 9600, 9984, 10496, 11008, 12032, 12096, 12672, 12960, 13056, 13122, 13568
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0029589..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195091 n = a195091_list !! (n-1)
    a195091_list = filter ((== 7) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[14000],PrimeOmega[#]-PrimeNu[#]==7&]
  • PARI
    is(n)=bigomega(n)-omega(n)==7 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 7. - Reinhard Zumkeller, Nov 29 2015

A257851 Triangle read by rows: row n contains the first n+1 numbers m such that A046660(m) = n.

Original entry on oeis.org

1, 4, 9, 8, 24, 27, 16, 48, 72, 80, 32, 96, 144, 160, 216, 64, 192, 288, 320, 432, 448, 128, 384, 576, 640, 864, 896, 1296, 256, 768, 1152, 1280, 1728, 1792, 2592, 2816, 512, 1536, 2304, 2560, 3456, 3584, 5184, 5632, 6400, 1024, 3072, 4608, 5120, 6912, 7168, 10368, 11264, 12800, 13312
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 29 2015

Keywords

Comments

At the suggestion of Michel Marcus's remark in Carlos Eduardo Olivieri's A261256.

Examples

			0:    1
1:    4     9
2:    8    24      27
3:   16    48      72    80
4:   32    96     144   160     216
5:   64   192     288   320     432   448
6:  128   384     576   640     864   896    1296
7:  256   768    1152  1280    1728  1792    2592   2816
8:  512  1536    2304  2560    3456  3584    5184   5632    6400
--  ------------------------------------------------------------
0:  1
1:  2^2   3^2
2:  2^3 2^3*3     3^3
3:  2^4 2^4*3 2^3*3^2 2^4*5
4:  2^5 2^5*3 2^4*3^2 2^5*5 2^3*3^3
5:  2^6 2^6*3 2^5*3^2 2^6*5 2^4*3^3 2^6*7
6:  2^7 2^7*3 2^6*3^2 2^7*5 2^5*3^3 2^7*7 2^4*3^4
7:  2^8 2^8*3 2^7*3^2 2^8*5 2^6*3^3 2^8*7 2^5*3^4 2^8*11
8:  2^9 2^9*3 2^8*3^2 2^9*5 2^7*3^3 2^9*7 2^6*3^4 2^9*11 2^8*5^2
		

Crossrefs

Programs

  • Haskell
    a257851 n k = a257851_tabl !! n !! k
    a257851_row n = a257851_tabl !! n
    a257851_tabl = map
       (\x -> take (x + 1) $ filter ((== x) . a046660) [1..]) [0..]
  • Mathematica
    T[n_] := Reap[For[m = 1; k = 1, k <= n+1, If[PrimeOmega[m] - PrimeNu[m] == n, Sow[m]; k++]; m++]][[2, 1]];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Sep 17 2021 *)

Formula

T(n,0) = A151821(n+1);
T(n,n-1) = A261256(n) for n > 0;
T(n,n) = A264959(n).
T(0,0) = A005117(1);
T(1,k) = A060687(k+1), k = 0..1;
T(2,k) = A195086(k+1), k = 0..2;
T(3,k) = A195087(k+1), k = 0..3;
T(4,k) = A195088(k+1), k = 0..4;
T(5,k) = A195089(k+1), k = 0..5;
T(6,k) = A195090(k+1), k = 0..6;
T(7,k) = A195091(k+1), k = 0..7;
T(8,k) = A195092(k+1), k = 0..8;
T(9,k) = A195093(k+1), k = 0..9;
T(10,k) = A195069(k+1), k = 0..10.

A264959 a(n) = A257851(n,n).

Original entry on oeis.org

1, 9, 27, 80, 216, 448, 1296, 2816, 6400, 13312, 30720, 62208, 139264, 311296, 688128, 1474560, 2985984, 6029312, 12845056, 30408704, 65011712, 131072000, 264241152, 553648128, 1132462080, 2293235712, 4697620480, 9932111872, 20132659200, 41875931136, 88046829568
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 29 2015

Keywords

Crossrefs

Programs

  • Haskell
    a264959 n = a257851 n n
    
  • Mathematica
    a[n_] := a[n] = Reap[For[m = 1; k = 1, k <= n+1, If[PrimeOmega[m] - PrimeNu[m] == n, Sow[m]; k++]; m++]][[2, 1]] // Last;
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 03 2021 *)
  • PARI
    a(n) = my(nb=0, k=1); until (nb == n+1, my(f=factor(k)); if (bigomega(f) - omega(f) == n, nb++); k++;); k-1; \\ Michel Marcus, Feb 05 2022

Extensions

a(21)-a(25) from Michel Marcus, Feb 05 2022
More terms from Jinyuan Wang, Feb 18 2022

A195069 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 10.

Original entry on oeis.org

2048, 6144, 9216, 10240, 13824, 14336, 20736, 22528, 25600, 26624, 30720, 31104, 34816, 38912, 43008, 46080, 46656, 47104, 50176, 59392, 63488, 64000, 64512, 67584, 69120, 69984, 71680, 75776, 76800, 79872, 83968, 88064, 96256, 96768, 101376, 103680, 104448
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0003698..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 25 2024

Examples

			14336 = 2^11 * 7^1, so it has 12 prime factors (counted with multiplicity) and 2 distinct prime factors, and 12-2 = 10.
		

Crossrefs

Programs

  • Haskell
    a195069 n = a195069_list !! (n-1)
    a195069_list = filter ((== 10) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
    
  • Maple
    op(select(n->bigomega(n)-nops(factorset(n))=10, [$1..104448])); # Paolo P. Lava, Jul 03 2018
  • Mathematica
    Select[Range[200000], PrimeOmega[#] - PrimeNu[#] == 10&]
  • PARI
    isok(n) = bigomega(n) - omega(n) == 10; \\ Michel Marcus, Jul 03 2018

Formula

A046660(a(n)) = 10. - Reinhard Zumkeller, Nov 29 2015

A195088 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 4.

Original entry on oeis.org

32, 96, 144, 160, 216, 224, 243, 324, 352, 400, 416, 480, 486, 544, 608, 672, 720, 736, 784, 928, 992, 1000, 1008, 1056, 1080, 1120, 1184, 1200, 1215, 1248, 1312, 1376, 1504, 1512, 1584, 1620, 1632, 1696, 1701, 1760, 1800, 1824, 1872, 1888, 1936, 1952
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0237194..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195088 n = a195088_list !! (n-1)
    a195088_list = filter ((== 4) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[2000],PrimeOmega[#]-PrimeNu[#]==4&]
  • PARI
    is(n)=bigomega(n)-omega(n)==4 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 4. - Reinhard Zumkeller, Nov 29 2015

A195090 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 6.

Original entry on oeis.org

128, 384, 576, 640, 864, 896, 1296, 1408, 1600, 1664, 1920, 1944, 2176, 2187, 2432, 2688, 2880, 2916, 2944, 3136, 3712, 3968, 4000, 4032, 4224, 4320, 4374, 4480, 4736, 4800, 4992, 5248, 5504, 6016, 6048, 6336, 6480, 6528, 6784
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0059189..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195090 n = a195090_list !! (n-1)
    a195090_list = filter ((== 6) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Maple
    op(select(n->bigomega(n)-nops(factorset(n))=6, [$1..6784])); # Paolo P. Lava, Jul 03 2018
  • Mathematica
    Select[Range[7000],PrimeOmega[#]-PrimeNu[#]==6&]
  • PARI
    is(n)=bigomega(n)-omega(n)==6 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 6. - Reinhard Zumkeller, Nov 29 2015
Showing 1-10 of 12 results. Next