cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048159 Triangle giving a(n,k) = number of (n,k) labeled Greg trees (n >= 2, 0 <= k <= n-2).

Original entry on oeis.org

1, 3, 1, 16, 13, 3, 125, 171, 85, 15, 1296, 2551, 2005, 735, 105, 16807, 43653, 47586, 26950, 7875, 945, 262144, 850809, 1195383, 924238, 412650, 100485, 10395, 4782969, 18689527, 32291463, 31818045, 19235755, 7113645, 1486485, 135135
Offset: 2

Views

Author

Keywords

Comments

An (n,k) Greg tree can be described as a tree with n black nodes and k white nodes where only the black nodes are labeled and the white nodes are of degree at least 3.
Row sums give A005263.

Examples

			Triangle begins
    1;
    3,   1;
   16,  13,   3;
  125, 171,  85,  15;
  ...
		

Crossrefs

Programs

  • Mathematica
    a[n_, 0] := n^(n-2); a[n_ /; n >= 2, k_] /; 0 <= k <= n-2 := a[n, k] = (n+k-3)*a[n-1, k-1] + (2*n+2*k-3)*a[n-1, k] + (k+1)*a[n-1, k+1]; a[n_, k_] = 0; Table[a[n, k], {n, 2, 9}, {k, 0, n-2}] // Flatten (* Jean-François Alcover, Oct 03 2013 *)

Formula

a(n, 0) = n^(n-2), a(n, k) = (n+k-3)*a(n-1, k-1) + (2n+2k-3)*a(n-1, k) + (k+1)*a(n-1, k+1).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000