cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048259 Number of distinct solutions to x + y + z = 0 (mod n), where two solutions are equivalent if one can be obtained from the other by multiplying by units in Z/nZ and permuting x,y,z.

Original entry on oeis.org

1, 1, 2, 3, 4, 3, 7, 4, 8, 6, 8, 4, 15, 5, 10, 11, 14, 5, 17, 6, 18, 14, 12, 6, 31, 9, 14, 13, 22, 7, 33, 8, 24, 16, 16, 16, 39, 9, 18, 19, 38, 9, 41, 10, 28, 28, 20, 10, 57, 15, 30, 21, 32, 11, 43, 20, 46, 24, 24, 12, 77, 13, 26, 35, 42, 23, 53, 14, 38, 26, 52, 14, 83
Offset: 0

Views

Author

Keywords

Examples

			For n=6 the 7 solutions are (x,y,z) = (0,0,0), (5,1,0), (4,2,0), (4,1,1), (3,3,0), (3,2,1), (2,2,2).
		

Crossrefs

Programs

  • PARI
    iscanon(n,v)={for(d=1, n-1, if(gcd(n,d)==1 && lex(v,vecsort(v*d%n))>0, return(0))); 1}
    a(n)={if(n==0, 1, sum(x=0, n-1, sum(y=x, n-1, my(z=(-x-y)%n); y<=z && iscanon(n,[x,y,z]) )))} \\ Andrew Howroyd, Jun 11 2021

Extensions

a(42) onward corrected by Sean A. Irvine, Jun 10 2021