A048270 Sequence of 2 Pythagorean triangles, each with a leg and hypotenuse prime. The leg of the second triangle is the hypotenuse of the first.
3, 11, 19, 59, 271, 349, 521, 929, 1031, 1051, 1171, 2381, 2671, 2711, 2719, 3001, 3499, 3691, 4349, 4691, 4801, 4999, 5591, 5669, 6101, 6359, 6361, 7159, 7211, 7489, 8231, 8431, 8761, 9241, 10099, 10139, 11719, 11821, 12239, 12281, 12781
Offset: 1
Keywords
Examples
p(1)=3 because 3 is prime, 5 = (3*3 + 1)/2 and 13 = (5*5 + 1)/2, 5, 13 both prime.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- H. Dubner and T. Forbes, Prime Pythagorean triangles, J. Integer Seqs., Vol. 4 (2001), #01.2.3.
Formula
For each p(n), there is a q=(p*p+1)/2 and r=(q*q+1)/2 such that p, q, r are all prime.
Extensions
More terms from Ray Chandler, Jun 12 2019
Comments