A048276 a(n) = number of squarefree numbers among C(n,k), k=0..n.
1, 2, 3, 4, 3, 6, 6, 8, 3, 2, 6, 12, 4, 10, 12, 14, 2, 6, 2, 8, 8, 10, 12, 24, 4, 4, 8, 2, 4, 12, 6, 12, 2, 4, 8, 8, 2, 8, 14, 12, 4, 12, 14, 26, 16, 8, 20, 42, 2, 2, 2, 4, 6, 18, 4, 6, 2, 6, 10, 22, 8, 26, 40, 8, 2, 4, 6, 8, 8, 16, 12, 18, 2, 8, 18, 4, 6, 14, 18, 34, 2, 2, 4, 6, 4, 10, 12, 16, 4
Offset: 0
Keywords
Examples
If n=20, then C(20, k) is squarefree for k = 0,2,4,8,12,16,18,20, that is, for 8 cases of k, so a(20)=8.
Links
- T. D. Noe, Table of n, a(n) for n = 0..5000
Programs
-
Maple
A048276 := proc(n) local a,k ; a := 0 ; for k from 0 to n do if issqrfree(binomial(n,k)) then a := a+1 ; end if; end do: a ; end proc: seq(A048276(n),n=0..40) ; # R. J. Mathar, Jan 18 2018
-
Mathematica
Table[Length[Select[Binomial[n, Range[0, n]], SquareFreeQ[#] &]], {n, 0, 100}]
-
PARI
a(n) = sum(k=0, n, issquarefree(binomial(n, k))); \\ Michel Marcus, Dec 19 2013
Formula
a(n) = n+1-A048277(n). - R. J. Mathar, Jan 18 2018
Comments