A048296 Continued fraction for Artin's constant.
0, 2, 1, 2, 14, 1, 1, 2, 3, 5, 1, 3, 1, 5, 1, 1, 2, 3, 5, 46, 2, 2, 4, 4, 2, 1, 6, 1, 1, 4, 2, 2, 1, 109, 1, 1, 4, 9, 3, 45, 8, 4, 1, 2, 1, 13, 13, 1, 1, 2, 1, 1, 2, 1, 4, 2, 3, 1, 17, 1, 1, 1, 6, 42, 1, 3, 1, 1, 4, 1, 1, 1, 1, 1, 2, 4, 5, 4, 1, 26, 1, 1, 74, 1, 1, 2, 1, 2, 2, 1, 1, 10, 1
Offset: 0
Examples
artin = 0.37395581361920228805... = 0 + 1/(2 + 1/(1 + 1/(2 + 1/(14 + ...)))). - _Harry J. Smith_, Apr 23 2009
References
- See A005596 for further references.
Links
Crossrefs
Cf. A005596.
Programs
-
Mathematica
digits = 105; m0 = 1000; dm = 100; Clear[s]; r[n_] := -1 + Fibonacci[n-1] + Fibonacci[n+1]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m - dm], 10, digits][[1]], Print[m]; m = m + dm]; A = s[m]; ContinuedFraction[A, 93] (* Jean-François Alcover, Apr 15 2016 *)
-
PARI
contfrac(prodeulerrat(1-1/(p^2-p))) \\ Amiram Eldar, Mar 12 2021