cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048296 Continued fraction for Artin's constant.

Original entry on oeis.org

0, 2, 1, 2, 14, 1, 1, 2, 3, 5, 1, 3, 1, 5, 1, 1, 2, 3, 5, 46, 2, 2, 4, 4, 2, 1, 6, 1, 1, 4, 2, 2, 1, 109, 1, 1, 4, 9, 3, 45, 8, 4, 1, 2, 1, 13, 13, 1, 1, 2, 1, 1, 2, 1, 4, 2, 3, 1, 17, 1, 1, 1, 6, 42, 1, 3, 1, 1, 4, 1, 1, 1, 1, 1, 2, 4, 5, 4, 1, 26, 1, 1, 74, 1, 1, 2, 1, 2, 2, 1, 1, 10, 1
Offset: 0

Views

Author

Fred Lunnon and Simon Plouffe, Dec 11 1999

Keywords

Examples

			artin = 0.37395581361920228805... = 0 + 1/(2 + 1/(1 + 1/(2 + 1/(14 + ...)))). - _Harry J. Smith_, Apr 23 2009
		

References

  • See A005596 for further references.

Crossrefs

Cf. A005596.

Programs

  • Mathematica
    digits = 105; m0 = 1000; dm = 100; Clear[s]; r[n_] := -1 + Fibonacci[n-1] + Fibonacci[n+1]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m - dm], 10, digits][[1]], Print[m]; m = m + dm]; A = s[m]; ContinuedFraction[A, 93] (* Jean-François Alcover, Apr 15 2016 *)
  • PARI
    contfrac(prodeulerrat(1-1/(p^2-p))) \\ Amiram Eldar, Mar 12 2021