A048347 a(n)^2 is the smallest square containing exactly n 2's.
5, 15, 149, 1415, 4585, 14585, 105935, 364585, 3496101, 4714045, 34964585, 149305935, 1490725415, 4714469665, 1490711985, 149071333335, 1105537083332, 1489973900149, 15106363633335, 47140462469223, 450246846657722, 1490713327333335, 4714049454791668, 47129833685493335, 27788886667555111
Offset: 1
Examples
From _Jon E. Schoenfield_, Dec 25 2008: (Start) a(16) = 149071333335 = sqrt(22222262422274682222225); a(17) = 1105537083332 = sqrt(1222212242622225512222224); a(18) = 1489973900149 = sqrt(2220022223125222222222201). (End) From _Giovanni Resta_, Jul 27 2018: (Start) a(19) = 15106363633335 = sqrt(228202222222546222323222225); a(20) = 47140462469223 = sqrt(2222223201812222222222223729). (End)
Links
- Eric Weisstein's World of Mathematics, Square Number
Programs
-
Mathematica
a[n_] := Block[{k=1}, While[DigitCount[k^2, 10, 2] != n, k++]; k]; Array[a, 7] (* Giovanni Resta, Jul 27 2018 *)
Extensions
a(13)-a(15) from Max Alekseyev, Oct 20 2008, Nov 10 2008, Dec 05 2008
a(16)-a(18) from Jon E. Schoenfield, Dec 25 2008
a(19)-a(20) from Giovanni Resta, Jul 27 2018
a(21)-a(25) from Max Alekseyev, Mar 06 2025