cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A048374 a(n)^3 is smallest cube containing exactly n 9's.

Original entry on oeis.org

9, 31, 99, 998, 999, 7937, 9999, 99998, 99999, 996999, 999999, 6688699, 9999999, 97609999, 99969999, 999999998, 999899999, 9998999999, 9999999999, 9999699999, 99999989999, 99998999999, 997999998999
Offset: 1

Views

Author

Patrick De Geest, Mar 15 1999

Keywords

Comments

a(24) > 5*10^12, a(25) = 999996999999. - Giovanni Resta, Jun 29 2018

Crossrefs

Programs

  • Mathematica
    (* A048374 *)
    nsmall = Table[Infinity, 11];
    For[i = 0, i <= 10^6, i++, n0 = Count[IntegerDigits[i^3], 9];
      If[nsmall[[n0]] > i, nsmall[[ n0]] = i]];
    nsmall(* Robert Price, Sep 26 2018 *)

Extensions

a(16)-a(22) from Lars Blomberg, Jun 12 2011
a(23) from Giovanni Resta, Jun 29 2018

A269244 Number of times the digit 4 appears in the decimal expansion of n^3.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 1, 1, 1, 2, 1, 0, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1
Offset: 0

Views

Author

M. F. Hasler, Feb 20 2016

Keywords

Comments

The cubes corresponding to the first occurrence of 1, 2, 3, ... are listed in A036531, i.e., A036531(n)^(1/3) = A048369(n) is the index of the first occurrence of n.

Examples

			0^3 = 0, 1^3 = 1, 2^3 = 8 and 3^3 = 27 all have a(0) = a(1) = a(2) = a(3) = 0 digits '4'.
4^3 = 64 has a(4) = 1 digit '4'.
14^3 = 2744 has a(14) = 2 digits '4'.
		

Crossrefs

Analog for the other digits 0, 1, ..., 9: A269250, A269241, A269242, A269243, A269244, A269245, A269246, A269247, A269248, A269249.
Analog for squares: A086012 (digit 4), and A086008 - A086017 for digits 0 - 9.

Programs

  • Mathematica
    Table[DigitCount[n^3, 10, 4], {n, 0, 100}] (* Robert Price, Mar 21 2020 *)
  • PARI
    A269244(n)=#select(t->t==4,digits(n^3))

A048366 a(n)^3 is smallest cube containing exactly n 1's.

Original entry on oeis.org

1, 11, 58, 106, 671, 1041, 10058, 22598, 145981, 480765, 2359231, 10297461, 4836178, 100395471, 465933117, 481182258, 4810215701, 16886336471, 49303833471, 103791158471, 223818432208, 4643311948655, 4809689791471
Offset: 1

Views

Author

Patrick De Geest, Mar 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{i}, i = 1; While[DigitCount[i^3][[1]] != n, i++;]; i]; (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 23 2006 *)

Extensions

a(14) from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 23 2006
a(15)-a(20) from Lars Blomberg, Jun 12 2011
a(21)-a(23) from Giovanni Resta, Jun 29 2018

A048373 a(n)^3 is smallest cube containing exactly n 8's.

Original entry on oeis.org

2, 42, 92, 436, 942, 2402, 16942, 52942, 266192, 2018892, 3069442, 14242355, 44559402, 207156367, 206524022, 2663151915, 5415821442, 7298885092, 33777876942, 441138374692, 1690359374442, 1316916061361
Offset: 1

Views

Author

Patrick De Geest, Mar 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{i = 0}, While[DigitCount[i^3][[8]] != n, i++ ]; i] (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 29 2006 *)

Extensions

a(14) from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 29 2006
a(15)-a(20) from Lars Blomberg, Jun 12 2011
a(21)-a(22) from Giovanni Resta, Jun 29 2018

A048367 a(n)^3 is smallest cube containing exactly n 2's.

Original entry on oeis.org

3, 28, 138, 587, 612, 2824, 27654, 29603, 131468, 1312748, 1616488, 2811574, 49629974, 139796852, 281986403, 1264554822, 6146857824, 16162692208, 60598584603, 229717543765, 606069984352, 2811738231378, 5869673191741
Offset: 1

Views

Author

Patrick De Geest, Mar 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{i}, i = 1; While[DigitCount[i^3][[2]] != n, i++ ]; i]; (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 23 2006 *)

Extensions

a(14) from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 23 2006
a(15)-a(20) from Lars Blomberg, Jun 12 2011
a(21)-a(22) from Giovanni Resta, Jun 29 2018
a(23) from Giovanni Resta, Mar 27 2020

A048368 a(n)^3 is smallest cube containing exactly n 3's.

Original entry on oeis.org

17, 7, 179, 477, 707, 6935, 15477, 44197, 535677, 693368, 2028209, 7566137, 32215777, 62446477, 322024127, 2027400657, 5171307877, 15373346477, 28575396477, 237304541491, 322033146477, 5105022776547, 4536383124177
Offset: 1

Views

Author

Patrick De Geest, Mar 15 1999

Keywords

Examples

			477^3 = 108531333 is the first cube containing four 3's, so a(4) = 477.
		

Crossrefs

Programs

  • Mathematica
    nsmall = Table[Infinity, 15];
    For[i = 0, i <= 10^6, i++, n0 = Count[IntegerDigits[i^3], 3];
      If[nsmall[[n0]] > i, nsmall[[n0]] = i]];
    Cases[nsmall, ?NumberQ] (* _Robert Price, Mar 20 2020 *)

Extensions

a(14)-a(16) from Simon Nickerson (simonn(AT)maths.bham.ac.uk), Aug 12 2005
a(17)-a(20) from Lars Blomberg, Jun 12 2011
a(21)-a(23) from Giovanni Resta, Jun 29 2018

A048370 a(n)^3 is smallest cube containing exactly n 5's.

Original entry on oeis.org

5, 25, 136, 715, 1526, 11828, 8121, 115798, 319405, 1771087, 2179693, 11665419, 38160335, 176024528, 1367063798, 3257101805, 9109186828, 38598478444, 136736651535, 380814792667, 821922685008
Offset: 1

Views

Author

Patrick De Geest, Mar 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    nsmall = Table[Infinity, 15];
    For[i = 0, i <= 10^6, i++, n0 = Count[IntegerDigits[i^3], 5];
      If[nsmall[[n0]] > i, nsmall[[n0]] = i]];
    Cases[nsmall, ?NumberQ] (* _Robert Price, Mar 20 2020 *)

Extensions

a(14) from Michel ten Voorde Jun 13 2003
a(15)-a(20) from Lars Blomberg, Jun 12 2011
a(21) from Giovanni Resta, Jun 29 2018

A048371 a(n)^3 is smallest cube containing exactly n 6's.

Original entry on oeis.org

4, 55, 36, 716, 1188, 4055, 13832, 18821, 190806, 1542023, 3971816, 13881356, 55009989, 154057624, 551727536, 1881662989, 4014051821, 15448244536, 185043243523, 405480132286, 550651031786, 4425284190954, 4881712198556
Offset: 1

Views

Author

Patrick De Geest, Mar 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{i = 0}, While[DigitCount[i^3][[6]] != n, i++ ]; i]; (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 27 2006 *)

Extensions

a(14) from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 27 2006
a(15)-a(20) from Lars Blomberg, Jun 12 2011
a(21)-a(23) from Giovanni Resta, Jun 29 2018

A048372 a(n)^3 is smallest cube containing exactly n 7's.

Original entry on oeis.org

3, 26, 83, 173, 1983, 2953, 19753, 90643, 258999, 426859, 4255753, 13955253, 42111153, 92356426, 425851173, 878398753, 9197190176, 9196397753, 89494606688, 390974932563, 918856391641, 4250703842293
Offset: 1

Views

Author

Patrick De Geest, Mar 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{i = 0}, While[DigitCount[i^3][[7]] != n, i++ ]; i]; (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 27 2006 *)

Extensions

a(14) from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 27 2006
a(15)-a(20) from Lars Blomberg, Jun 12 2011
a(21)-a(22) from Giovanni Resta, Jun 29 2018

A036531 Smallest cube containing exactly n 4's.

Original entry on oeis.org

0, 64, 2744, 1481544, 4410944, 444194947, 44474744007, 4970444443496, 2440744441344, 4408846444574424, 434424163454644544, 40045354844444494784, 304443494462464444459, 24144094248434404444864, 45444444436448021414449, 442063442345444443482444864
Offset: 0

Views

Author

Keywords

Comments

a(n)^(1/3) = A048369(n) is the index of the first occurrence of n in sequence A269244. - M. F. Hasler, Feb 21 2016

Crossrefs

Programs

  • Mathematica
    nsmall = Table[Infinity, 20];
    For[i = 0, i <= 10^6, i++, n0 = Count[IntegerDigits[i^3], 4];
      If[nsmall[[n0 + 1]] > i^3, nsmall[[n0 + 1]] = i^3]];
    Cases[nsmall, ?NumberQ] (* _Robert Price, Mar 21 2020 *)

Formula

a(n) = A048369(n)^3. - M. F. Hasler, Feb 21 2016

Extensions

Extended with a(0) = 0 by M. F. Hasler, Feb 21 2016
a(11)-a(15) from Giovanni Resta, Jun 29 2018
Showing 1-10 of 10 results.