A048578 Pisot sequence L(3,5).
3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297, 8589934593, 17179869185
Offset: 0
References
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Josef Eschgfäller and Andrea Scarpante, Dichotomic random number generators, arXiv:1603.08500 [math.CO], 2016.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Group.
- Wikipedia, Generating set of a group.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
[2^(n+1)+1 : n in [0..40]]; // Vincenzo Librandi, Sep 01 2011
-
Mathematica
LinearRecurrence[{3,-2},{3,5},40] (* Harvey P. Dale, Sep 10 2017 *)
-
PARI
my(x='x+O('x^99)); Vec(1/(1-x)+2/(1-2*x)) \\ Altug Alkan, Mar 29 2016
Formula
a(n) = 2^(n+1)+1.
a(n) = 3*a(n-1) - 2*a(n-2).
O.g.f.: (3-4*x)/(1-3*x+2*x^2). - R. J. Mathar, Nov 23 2007
E.g.f.: exp(x)*(1 + 2*exp(x)). - Elmo R. Oliveira, Dec 06 2024
Comments