cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048625 Pisot sequence P(4,6).

Original entry on oeis.org

4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961, 8407925, 12322413, 18059374
Offset: 0

Views

Author

Keywords

Comments

Conjecture: satisfies a linear recurrence having signature (1, 0, 1). - Harvey P. Dale, Jun 05 2021

Crossrefs

Subsequence of A000930. See A008776 for definitions of Pisot sequences.

Programs

  • Maple
    P := proc(a0,a1,n)
        option remember;
        if n = 0 then
            a0 ;
        elif n = 1 then
            a1;
        else
            ceil( procname(a0,a1,n-1)^2/procname(a0,a1,n-2)-1/2) ;
        end if;
    end proc:
    A048625 := proc(n)
        P(4,6,n) ;
    end proc: # R. J. Mathar, Feb 12 2016
  • Mathematica
    P[a0_, a1_, n_] := P[a0, a1, n] = Switch[n, 0, a0, 1, a1, _, Ceiling[P[a0, a1, n-1]^2/P[a0, a1, n-2] - 1/2]];
    a[n_] := P[4, 6, n];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 25 2023, after R. J. Mathar *)
  • PARI
    pisotP(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]-1/2));
      a
    }
    pisotP(50, 4, 6) \\ Colin Barker, Aug 08 2016

Formula

a(n) = a(n-1) + a(n-3) (Checked up to n = 48000).
G.f.: (conjecture) (( Q(0)-1)/2 -(x+x^2+x^3+2*x^4+3*x^5))/x^6, where Q(k) = 1 + x^3 + (2*k+3)*x - x*(2*k+1 + x^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013