A048625 Pisot sequence P(4,6).
4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961, 8407925, 12322413, 18059374
Offset: 0
Keywords
Links
Programs
-
Maple
P := proc(a0,a1,n) option remember; if n = 0 then a0 ; elif n = 1 then a1; else ceil( procname(a0,a1,n-1)^2/procname(a0,a1,n-2)-1/2) ; end if; end proc: A048625 := proc(n) P(4,6,n) ; end proc: # R. J. Mathar, Feb 12 2016
-
Mathematica
P[a0_, a1_, n_] := P[a0, a1, n] = Switch[n, 0, a0, 1, a1, _, Ceiling[P[a0, a1, n-1]^2/P[a0, a1, n-2] - 1/2]]; a[n_] := P[4, 6, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 25 2023, after R. J. Mathar *)
-
PARI
pisotP(nmax, a1, a2) = { a=vector(nmax); a[1]=a1; a[2]=a2; for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]-1/2)); a } pisotP(50, 4, 6) \\ Colin Barker, Aug 08 2016
Formula
a(n) = a(n-1) + a(n-3) (Checked up to n = 48000).
G.f.: (conjecture) (( Q(0)-1)/2 -(x+x^2+x^3+2*x^4+3*x^5))/x^6, where Q(k) = 1 + x^3 + (2*k+3)*x - x*(2*k+1 + x^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
Comments