A048627 Numbers m such that the maximal value of A001222(binomial(m,k)) and the central value A001222(A001405(m)) are identical.
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 22, 23, 26, 27, 28, 29, 30, 39, 45, 46, 47, 51, 58, 59, 61, 62, 63, 86, 87, 93, 94, 95, 118, 119, 122, 123, 124, 125, 126, 147, 148, 158, 159, 178, 179, 187, 188, 189, 190, 214, 215, 221, 222, 236, 237, 238, 245, 246, 247, 248, 249, 253, 254
Offset: 1
Keywords
Examples
For m=23, A001222 for binomial(23,k) = {0,1,2,3,4,4,5,5,6,6,6,6,6,6,6,6,5,5,4,4,3,2,1,0}, thus both the maximal and central values are 6, so 23 is a term.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[120], Function[n, ar = PrimeOmega[#] & /@ Binomial[n, Range[0, n/2]]; Max[ar] == ar[[-1]]]] (* Ivan Neretin, Sep 07 2015 *)
-
PARI
isok(m) = vecmax(apply(bigomega, vector(m+1, k, binomial(m,k-1)))) == bigomega(binomial(m, m\2)); \\ Michel Marcus, Jun 25 2021
Comments