cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048631 Xfactorials - like factorials but use carryless GF(2)[ X ] polynomial multiplication.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 272, 1904, 15232, 124800, 848640, 7507200, 39738368, 433441792, 2589116416, 30419859456, 486717751296, 8128101580800, 132557598294016, 1971862458400768, 30421253686034432, 512675443057623040, 7176891455747129344, 130521457800367308800
Offset: 0

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

In formula X stands for the multiplication in a ring of GF(2)[ X ] polynomials.

Crossrefs

Programs

  • Maple
    Xfactorial := proc(n) option remember; if n=0 then 1
                    else Xmult(n, Xfactorial(n-1)) fi
                  end:
    Xmult := proc(n, m) option remember; if n=0 then 0
               else Bits[Xor](((n mod 2)*m), Xmult(floor(n/2), m*2)) fi
             end:
    seq(Xfactorial(n), n=0..23);
  • Mathematica
    Xmult[nn_, mm_] := Module[{n = nn, m = mm, s = 0}, While[n > 0, If[1 == Mod[n, 2], s = BitXor[s, m]]; n = Floor[n/2]; m = m*2]; s];
    Xfactorial[n_] := Xfactorial[n] = If[0 == n, 1, Xmult[n, Xfactorial[n - 1]] ];
    Table[Xfactorial[n], {n, 0, 21}] (* Jean-François Alcover, Mar 04 2016, updated Mar 06 2016 after Maple *)
  • PARI
    a(n)=my(s=Mod(1,2)); for(k=1,n, s*=Pol(binary(k))); fromdigits(Vec(lift(s)), 2) \\ Charles R Greathouse IV, Oct 03 2016

Formula

a(0) = 1, a(n) = n X a(n-1) (see the Maple function Xfactorial given below).
Using the notations introduced in A355891, we have a(n) = ivgenpoly(Product_{i=1..n} genpoly(n)). As an example, n = 6 corresponds to 1*x*(x+1)*x^2*(x^2+1)*(x^2+x) = x^8+x^4 in GF(2)[x], so a(6) = 2^8 + 2^4 = 272. - Jianing Song, Sep 30 2022