cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048633 Largest squarefree number dividing n-th central binomial coefficient C(n,[ n/2 ]).

Original entry on oeis.org

1, 2, 3, 6, 10, 10, 35, 70, 42, 42, 462, 462, 858, 858, 2145, 4290, 24310, 24310, 92378, 92378, 176358, 176358, 1352078, 1352078, 520030, 520030, 222870, 222870, 6463230, 6463230, 100180065, 200360130, 129644790, 129644790, 907513530
Offset: 1

Views

Author

Keywords

Comments

a(2k+1)=a(2k+2) unless 2k+1 is in A000225, in which case a(2k+2)=2*a(2k+1). - Robert Israel, Jan 21 2020

Examples

			n=10: C(10,5)=252=2*2*3*3*7. The largest squarefree number dividing the 10th central binomial coefficient is 2*3*7=42. Thus a(10)=42
		

Crossrefs

Equals A007947(A001405(n)). Cf. A034973, A000225.
See A056058 for another version.

Programs

  • Magma
    [&*PrimeDivisors(Binomial(n, Floor(n/2))): n in [1..35]]; // Marius A. Burtea, Jan 21 2020
  • Maple
    f:= n -> convert(numtheory:-factorset(binomial(n,floor(n/2))),`*`):
    map(f, [$1..50]); # Robert Israel, Jan 21 2020
  • Mathematica
    Table[Last@ Select[Divisors@ Binomial[n, Floor[n/2]], SquareFreeQ], {n, 35}] (* Michael De Vlieger, Feb 05 2017 *)
  • PARI
    a(n)=factorback(factor(binomial(n,n\2))[,1]) \\ Charles R Greathouse IV, Nov 05 2017