A048633 Largest squarefree number dividing n-th central binomial coefficient C(n,[ n/2 ]).
1, 2, 3, 6, 10, 10, 35, 70, 42, 42, 462, 462, 858, 858, 2145, 4290, 24310, 24310, 92378, 92378, 176358, 176358, 1352078, 1352078, 520030, 520030, 222870, 222870, 6463230, 6463230, 100180065, 200360130, 129644790, 129644790, 907513530
Offset: 1
Keywords
Examples
n=10: C(10,5)=252=2*2*3*3*7. The largest squarefree number dividing the 10th central binomial coefficient is 2*3*7=42. Thus a(10)=42
Links
- Robert Israel, Table of n, a(n) for n = 1..3364
Programs
-
Magma
[&*PrimeDivisors(Binomial(n, Floor(n/2))): n in [1..35]]; // Marius A. Burtea, Jan 21 2020
-
Maple
f:= n -> convert(numtheory:-factorset(binomial(n,floor(n/2))),`*`): map(f, [$1..50]); # Robert Israel, Jan 21 2020
-
Mathematica
Table[Last@ Select[Divisors@ Binomial[n, Floor[n/2]], SquareFreeQ], {n, 35}] (* Michael De Vlieger, Feb 05 2017 *)
-
PARI
a(n)=factorback(factor(binomial(n,n\2))[,1]) \\ Charles R Greathouse IV, Nov 05 2017
Comments