cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A331586 Even numbers n such that A048633(n+1) = A048633(n).

Original entry on oeis.org

174, 398, 474, 934, 1214, 1934, 2254, 2638, 2966, 3806, 3886, 4024, 4574, 4696, 4718, 4928, 4958, 4990, 5014, 5246, 5290, 5438, 6698, 6934, 7028, 7136, 7258, 7266, 7424, 7694, 7838, 8176, 8448, 8574, 8720, 8958, 9854, 9974, 10174, 10334, 10448, 11338, 11374, 12094, 12102, 12220, 12462, 12626
Offset: 1

Views

Author

Robert Israel, Jan 21 2020

Keywords

Comments

binomial(2k+1,k)/binomial(2k,k) = (2k+1)/(k+1), so 2k is a member if and only if every prime dividing 2k+1 divides binomial(2k,k) and every prime dividing k+1 divides binomial(2k+1,k).
A048633(n+1)=A048633(n) for all odd numbers n except the Mersenne numbers (A000225).

Examples

			a(1)=174 is a member because 174 is even and A048633(174)=A048633(175)=632127493640977953733428652337034082437215015190.
		

Crossrefs

Programs

  • Maple
    g:= proc(m,n,p)
      local Lm, Ln;
       Lm:= convert(m,base,p);
       Ln:= convert(n,base,p);
       min(Lm[1..nops(Ln)]-Ln) < 0
    end proc:
    filter:= proc(n) local p;
      for p in numtheory:-factorset(n+1) do
         if not g(n,n/2,p) then return false fi;
      od;
      for p in numtheory:-factorset(n/2+1) do
         if not g(n+1,n/2,p) then return false fi
      od;
      true
    end proc:
    select(filter, [seq(i,i=2..15000,2)]);

A056058 Squarefree part of the n-th central binomial coefficient.

Original entry on oeis.org

1, 2, 3, 6, 10, 5, 35, 70, 14, 7, 462, 231, 429, 858, 715, 1430, 24310, 12155, 92378, 46189, 88179, 176358, 1352078, 676039, 52003, 104006, 22287, 44574, 2154410, 1077205, 33393355, 66786710, 129644790, 64822395, 181502706, 90751353
Offset: 1

Views

Author

Labos Elemer, Jul 26 2000

Keywords

Comments

a(3387) has 1001 decimal digits. - Michael De Vlieger, Jul 14 2017

Crossrefs

Cf. A048633 for another version.

Programs

Formula

a(n) = A007913(A001405(n)).
For squarefree central binomial coefficients (A046098), a(n)=A001405(n).

A056606 Squarefree kernel of lcm(binomial(n,0), ..., binomial(n,n)).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 30, 105, 70, 42, 210, 2310, 2310, 4290, 6006, 15015, 30030, 170170, 510510, 1939938, 1385670, 881790, 9699690, 223092870, 44618574, 17160990, 74364290, 31870410, 223092870, 6469693230, 6469693230, 100280245065
Offset: 0

Views

Author

Labos Elemer, Aug 07 2000

Keywords

Comments

Also squarefree kernel of A001142; row products in table A256113. - Reinhard Zumkeller, Mar 21 2015
a(2372) has 1001 decimal digits. - Michael De Vlieger, Jul 14 2017
Also the squarefree kernel of the cumulative product of n^n/n!. - Peter Luschny, Dec 21 2019
Conjecture: the few odd values belong to A070826. - Bill McEachen, Jun 24 2023
And their indices appear to be A007053. - Michel Marcus, Jul 01 2023

Examples

			a(7) = 105 because lcm(1, 7, 21, 35) = 105 is already squarefree.
a(0) = 1 because n^n/n! = 1 for the integer n = 0. - _Peter Luschny_, Dec 21 2019
		

Crossrefs

Programs

  • Haskell
    a056606 = a007947 . a001142  -- Reinhard Zumkeller, Mar 21 2015
    
  • Maple
    h := n -> mul(k^k/factorial(k), k=0..n):
    rad := n -> mul(k, k = numtheory[factorset](n)):
    seq(rad(h(n)), n=0..31); # Peter Luschny, Dec 21 2019
  • Mathematica
    Table[Apply[Times, FactorInteger[Product[k^(2 k - 1 - n), {k, n}]][[All, 1]]], {n, 0, 31}] (* or *)
    Table[Apply[Times, FactorInteger[Apply[LCM, Range@ n]/n][[All, 1]]], {n, 1, 32}] (* Michael De Vlieger, Jul 14 2017 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    a(n) = rad(lcm(vector(n+1, k, binomial(n,k-1)))); \\ Michel Marcus, Jun 24 2023

Formula

a(n) = A007947(A002944(n+1)). - Michel Marcus, Dec 21 2019
a(n) = radical(hyperfactorial(n)/superfactorial(n)) = A007947(A002109(n)/ A000178(n)) for n >= 0. - Peter Luschny, Dec 21 2019

Extensions

Extended with a(0) = 1 by Peter Luschny, Dec 21 2019

A080397 Largest squarefree number dividing central binomial coefficient A000984(n).

Original entry on oeis.org

1, 2, 6, 10, 70, 42, 462, 858, 4290, 24310, 92378, 176358, 1352078, 520030, 222870, 6463230, 200360130, 129644790, 907513530, 1767263190, 22974421470, 134564468610, 526024740930, 22870640910, 1074920122770, 1504888171878, 1967930686302, 34766775458002, 1912172650190110
Offset: 0

Views

Author

Labos Elemer, Mar 19 2003

Keywords

Crossrefs

Programs

  • Maple
    a := n -> convert(numtheory:-factorset(binomial(2*n, n)), `*`):
    seq(a(n),n=0..25); # Peter Luschny, Oct 31 2015
  • Mathematica
    a[n_] := Times @@ FactorInteger[Binomial[2n, n]][[All, 1]]; Array[a, 26, 0] (* Jean-François Alcover, Jun 04 2019 *)
  • PARI
    a(n) = vecprod(factor(binomial(2*n, n))[, 1]); \\ Amiram Eldar, Jun 21 2024

Formula

a(n) = A007947(A000984(n)).

Extensions

More terms from Amiram Eldar, Jun 21 2024

A056607 a(n) is the n-th primorial divided by squarefree kernel of corresponding central binomial coefficient.

Original entry on oeis.org

2, 3, 10, 35, 231, 3003, 14586, 138567, 5311735, 154040315, 434113615, 16062203755, 354604036745, 15247973580035, 286661903304658, 7596540437573437, 79093391614735197, 4824696888498847017, 85067024086690197405, 6039758710155004015755, 230948868774022296411965
Offset: 1

Views

Author

Labos Elemer, Aug 07 2000

Keywords

Examples

			For n = 6, A002110(6) = 30030, C(6,3) = 20 with squarefree kernel 10. So, a(6) = 30030/10 = 3003 = 3*7*11*13, which is also squarefree.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ Prime[Range[n]] / Times @@ FactorInteger[Binomial[n, Floor[n/2]]][[;;, 1]]; Array[a, 21] (* Amiram Eldar, Mar 01 2025 *)
  • PARI
    a(n) = prod(k=1, n, prime(k))/factorback(factor(binomial(n, n\2))[, 1]); \\ Michel Marcus, Jul 13 2018

Formula

a(n) = A002110(n)/A048633(n).

A056610 Quotient: squarefree kernel of lcm(1,..,n) (or of n!) divided by kernel of central binomial coefficient.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 6, 3, 5, 5, 5, 5, 35, 35, 14, 7, 21, 21, 105, 105, 55, 55, 165, 165, 429, 429, 1001, 1001, 1001, 1001, 2002, 1001, 1547, 1547, 221, 221, 4199, 4199, 323, 323, 2261, 2261, 24871, 24871, 572033, 572033, 572033, 572033, 408595, 408595
Offset: 1

Views

Author

Labos Elemer, Aug 07 2000

Keywords

Examples

			n = 10, lcm(1, 2, 3, ..., 10) = 2520, lcm(1, 10, 45, 120, 210, 252) = 252; the corresponding kernels are 210 or 42. The quotient is a(10) = 5.
		

Crossrefs

Formula

a(n) = A007947(A000142(n))/A007947(A001405(n)) = A034386(n)/A048633(n).

A048681 Maximum over k of the largest squarefree number dividing a value of binomial(n,k).

Original entry on oeis.org

1, 2, 3, 6, 10, 15, 35, 70, 42, 210, 462, 462, 858, 3003, 5005, 4290, 24310, 24310, 92378, 125970, 293930, 646646, 1352078, 1352078, 817190, 5311735, 2897310, 13123110, 34597290, 17298645, 100180065, 200360130, 129644790, 2203961430
Offset: 1

Views

Author

Keywords

Examples

			For n=10, the squarefree kernels of binomial(n,k) are {1, 10, 15, 30, 210, 42, 210, 30, 15, 10, 1}, so the maximal largest squarefree divisor is that of binomial(10,4)=210: it is 210, so a(10)=210. (It is not equal to the largest squarefree number dividing binomial(10,5)=252, which is A048633(10)=42.) [edited by _Jon E. Schoenfield_, May 19 2018]
		

Crossrefs

Analogous sequences for A001221, A001222, A000005 are given in A048273, A048275, A048620.

Programs

  • PARI
    a(n) = vecmax(vector(ceil(n\2)+1, k, factorback(factorint(binomial(n,k-1))[, 1]))); \\ Michel Marcus, May 20 2018
Showing 1-7 of 7 results.