cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001142 a(n) = Product_{k=1..n} k^(2k - 1 - n).

Original entry on oeis.org

1, 1, 2, 9, 96, 2500, 162000, 26471025, 11014635520, 11759522374656, 32406091200000000, 231627686043080250000, 4311500661703860387840000, 209706417310526095716965894400, 26729809777664965932590782608648192
Offset: 0

Views

Author

Keywords

Comments

Absolute value of determinant of triangular matrix containing binomial coefficients.
These are also the products of consecutive horizontal rows of the Pascal triangle. - Jeremy Hehn (ROBO_HEN5000(AT)rose.net), Mar 29 2007
Limit_{n->oo} a(n)*a(n+2)/a(n+1)^2 = e, as follows from lim_{n->oo} (1 + 1/n)^n = e. - Harlan J. Brothers, Nov 26 2009
A000225 gives the positions of odd terms. - Antti Karttunen, Nov 02 2014
Product of all unreduced fractions h/k with 1 <= k <= h <= n. - Jonathan Sondow, Aug 06 2015
a(n) is a product of the binomial coefficients from the n-th row of the Pascal triangle, for n= 0, 1, 2, ... For n > 0, a(n) means the number of all maximum chains in the poset formed by the n-dimensional Boolean cube {0,1}^n and the relation "precedes by weight". This relation is defined over {0,1}^n as follows: for arbitrary vectors u, v of {0,1}^n we say that "u precedes by weight v" if wt(u) < wt(v) or if u = v, where wt(u) denotes the (Hamming) weight of u. For more details, see the sequence A051459. - Valentin Bakoev, May 17 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. also A004788, A056606 (squarefree kernel), A256113.

Programs

  • GAP
    List([0..15], n-> Product([0..n], k-> Binomial(n,k) )); # G. C. Greubel, May 23 2019
    
  • Haskell
    a001142 = product . a007318_row -- Reinhard Zumkeller, Mar 16 2015
    
  • Magma
    [(&*[Binomial(n,k): k in [0..n]]): n in [0..15]]; // G. C. Greubel, May 23 2019
    
  • Maple
    a:=n->mul(binomial(n,k), k=0..n): seq(a(n), n=0..14); # Zerinvary Lajos, Jan 22 2008
  • Mathematica
    Table[Product[k^(2*k - 1 - n), {k, n}], {n, 0, 20}] (* Harlan J. Brothers, Nov 26 2009 *)
    Table[Hyperfactorial[n]/BarnesG[n+2], {n, 0, 20}] (* Peter Luschny, Nov 29 2015 *)
    Table[Product[(n - k + 1)^(n - 2 k + 1), {k, 1, n}], {n, 0, 20}] (* Harlan J. Brothers, Aug 26 2023 *)
  • Maxima
    a(n):= prod(binomial(n,k),k,0,n); n : 15; for i from 0 thru n do print (a(i)); /* Valentin Bakoev, May 17 2019 */
    
  • PARI
    for(n=0,16,print(prod(m=1,n,binomial(n,m))))
    
  • PARI
    A001142(n) = prod(k=1, n, k^((k+k)-1-n)); \\ Antti Karttunen, Nov 02 2014
    
  • Python
    from math import factorial, prod
    from fractions import Fraction
    def A001142(n): return prod(Fraction((k+1)**k,factorial(k)) for k in range(1,n)) # Chai Wah Wu, Jul 15 2022
  • Sage
    a = lambda n: prod(k^k/factorial(k) for k in (1..n))
    [a(n) for n in range(20)] # Peter Luschny, Nov 29 2015
    
  • Scheme
    (define (A001142 n) (mul (lambda (k) (expt k (+ k k -1 (- n)))) 1 n))
    (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))
    ;; Antti Karttunen, Oct 28 2014
    

Formula

a(n) = C(n, 0)*C(n, 1)* ... *C(n, n).
From Harlan J. Brothers, Nov 26 2009: (Start)
a(n) = Product_{j=1..n-2} Product_{k=1..j} (1+1/k)^k, n >= 3.
a(1) = a(2) = 1, a(n) = a(n-1) * Product_{k=1..n-2} (1+1/k)^k. (End)
a(n) = hyperfactorial(n)/superfactorial(n) = A002109(n)/A000178(n). - Peter Luschny, Jun 24 2012
a(n) ~ A^2 * exp(n^2/2 + n - 1/12) / (n^(n/2 + 1/3) * (2*Pi)^((n+1)/2)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015
a(n) = Product_{i=1..n} Product_{j=1..i} (i/j). - Pedro Caceres, Apr 06 2019
a(n) = Product_{k=1..n} (n - k + 1)^(n - 2*k + 1). - Harlan J. Brothers, Aug 26 2023

Extensions

More terms from James Sellers, May 01 2000
Better description from Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001

A002944 a(n) = LCM(1,2,...,n) / n.

Original entry on oeis.org

1, 1, 2, 3, 12, 10, 60, 105, 280, 252, 2520, 2310, 27720, 25740, 24024, 45045, 720720, 680680, 12252240, 11639628, 11085360, 10581480, 232792560, 223092870, 1070845776, 1029659400, 2974571600, 2868336900, 80313433200, 77636318760, 2329089562800
Offset: 1

Views

Author

Keywords

Comments

Equals LCM of all numbers of (n-1)-st row of Pascal's triangle [Montgomery-Breusch]. - J. Lowell, Apr 16 2014. Corrected by N. J. A. Sloane, Sep 04 2019
Williams proves that a(n+1) = A034386(n) for n=2, 11 and 23 only. This is trivially the case for n=0 and 1, too. - Michel Marcus, Apr 16 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A025527 and A025537.
Cf. A056606 (squarefree kernel).

Programs

  • Haskell
    a002944 n = a003418 n `div` n  -- Reinhard Zumkeller, Mar 16 2015
  • Maple
    A003418 := n-> lcm(seq(i,i=1..n)); f:=n->A003418(n)/n;
    BB:=n->sum(1/sqrt(k), k=1..n): a:=n->floor(denom(BB(n))/n): seq(a(n), n=1..29); # Zerinvary Lajos, Mar 29 2007
  • Mathematica
    Table[Apply[LCM,Range[n]]/n,{n,1,30}]  (* Geoffrey Critzer, Feb 10 2013 *)
  • PARI
    a(n) = lcm(vector(n, i, i))/n; \\ Michel Marcus, Apr 16 2014
    

Formula

a(n) = A003418(n) / n.
a(n) = LCM of C(n-1, 0), C(n-1, 1), ..., C(n-1, n-1). [Montgomery-Breusch] [Corrected by N. J. A. Sloane, Jun 11 2008]
Equally, a(n+1) = LCM_{k=0..n} binomial(n,k). - Franklin T. Adams-Watters, Jul 05 2009

Extensions

More terms from Jud McCranie, Jan 17 2000
Edited by N. J. A. Sloane, Jun 11 2008 and Sep 04 2019

A056077 Indices n of terms of sequence A001142, Product_{k=0..n} binomial(n,k), that are divisible by all primes <= n.

Original entry on oeis.org

1, 2, 4, 6, 10, 11, 12, 16, 18, 22, 23, 28, 29, 30, 35, 36, 39, 40, 42, 44, 46, 47, 52, 55, 58, 59, 60, 62, 66, 69, 70, 71, 72, 78, 79, 82, 83, 88, 89, 95, 96, 100, 102, 104, 106, 107, 108, 111, 112, 119, 125, 126, 130, 131, 134, 136, 138, 139, 143, 148, 149, 150, 153
Offset: 1

Views

Author

Leroy Quet, Jul 26 2000

Keywords

Comments

a(n) + 1 is either a prime or a "mutinous number" (A027854).

Examples

			11 is included because Product_{k=0..11} binomial(11, k) is divisible by 2, 3, 5, 7 and 11.
		

Crossrefs

Programs

  • Maple
    isA056077 := proc(n) local radh; radh := proc(n) option remember;
    mul(k, k = numtheory:-factorset(mul(k^k/factorial(k), k=0..n))) end;
    type(radh(n)/radh(n-1), integer) end: # isA056077(0) = true.
    select(isA056077, [$1..153]); # Peter Luschny, Dec 21 2019
  • Mathematica
    With[{s = Select[Range@ 154, Function[n, (n/Apply[Power, Last@ #]) > #[[-1, 1]] &@ FactorInteger[n]]]}, -1 + Union[s, Prime@ Range@ PrimePi@ Max@ s]] (* Michael De Vlieger, Sep 23 2017 *)

Formula

Let h(m) = Product(PrimeDivisors(Product_{k=0..m} k^k/k!)). If h(m-1) divides h(m) then m is in this sequence. # Peter Luschny, Dec 21 2019

Extensions

Extended by Ray Chandler, Nov 17 2008

A256113 Table read by rows: T(1,1) = 1, for n > 1: row n = union of distinct prime factors occurring in terms of n-th row of Pascal's triangle, cf. A007318.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 5, 2, 3, 5, 3, 5, 7, 2, 5, 7, 2, 3, 7, 2, 3, 5, 7, 2, 3, 5, 7, 11, 2, 3, 5, 7, 11, 2, 3, 5, 11, 13, 2, 3, 7, 11, 13, 3, 5, 7, 11, 13, 2, 3, 5, 7, 11, 13, 2, 5, 7, 11, 13, 17, 2, 3, 5, 7, 11, 13, 17, 2, 3, 7, 11, 13, 17, 19, 2, 3, 5, 11, 13
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 16 2015

Keywords

Examples

			.  n |   T(n,k)   |                A001142(n) | A007318(n,0..n)
. ---+------------+---------------------------+-------------------------
.  1 | 1          |                         1 | 1  1
.  2 | 2          |                         2 | 1  2  1
.  3 | 3          |                         9 | 1  3  3   1
.  4 | 2 3        |                        96 | 1  4  6   4   1
.  5 | 2 5        |                      2500 | 1  5 10  10   5   1
.  6 | 2 3 5      |                    162000 | 1  6 15  20  15   6   1
.  7 | 3 5 7      |                  26471025 | 1  7 21  35  35  21   7   1
.  8 | 2 5 7      |               11014635520 | 1  8 28  56  70  56  28 ...
.  9 | 2 3 7      |            11759522374656 | 1  9 36  84 126 126  84 ...
. 10 | 2 3 5 7    |         32406091200000000 | 1 10 45 120 210 252 210 ...
. 11 | 2 3 5 7 11 |     231627686043080250000 | 1 11 55 165 330 462 462 ...
. 12 | 2 3 5 7 11 | 4311500661703860387840000 | 1 12 66 220 495 792 924 ...
		

Crossrefs

Cf. A007318, A027748, A001142, A004788 (row lengths), A056606 (row products).

Programs

  • Haskell
    a256113 n k = a256113_tabf !! (n-1) !! (n-1)
    a256113_row n = a256113_tabf !! (n-1)
    a256113_tabf = map a027748_row $ tail a001142_list

A056609 a(n) = rad(n!)/rad(A001142(n)) where rad(n) is the squarefree kernel of n, A007947(n).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 3, 5, 1, 1, 1, 7, 5, 2, 1, 3, 1, 5, 7, 11, 1, 1, 5, 13, 3, 7, 1, 1, 1, 2, 11, 17, 7, 1, 1, 19, 13, 1, 1, 7, 1, 11, 1, 23, 1, 1, 7, 5, 17, 13, 1, 3, 11, 1, 19, 29, 1, 1, 1, 31, 1, 2, 13, 11, 1, 17, 23, 1, 1, 1, 1, 37, 5, 19, 11, 13, 1, 1, 3, 41, 1, 1, 17, 43, 29, 11, 1, 1, 13
Offset: 1

Views

Author

Labos Elemer, Aug 07 2000

Keywords

Comments

The previous name, which does not match the data as observed by Luc Rousseau, was: Quotient of squarefree kernels of A002944(n) and A001405.
a(n) is the unique prime p not greater than n missing in the prime factorization of A001142(n), if such a prime exists; a(n) is 1 otherwise. - Luc Rousseau, Jan 01 2019

Examples

			From _Luc Rousseau_, Jan 02 2019: (Start)
In Pascal's triangle,
- row n=3 (1 3 3 1) contains no number with prime factor 2, so a(3) = 2;
- row n=4 (1 4 6 4 1) contains, for all p prime <= 4, a multiple of p, so a(4) = 1;
- row n=5 (1 5 10 10 5 1) contains no number with prime factor 3, so a(5) = 3;
etc.
(End)
		

Crossrefs

Programs

  • Mathematica
    L[n_] := Table[Binomial[n, k], {k, 1, Floor[n/2]}]
    c[n_] := Complement[Prime /@ Range[PrimePi[n]], First /@ FactorInteger[Times @@ L[n]]]
    a[n_] := Module[{x = c[n]}, If[x == {}, 1, First[x]]]
    Table[a[n], {n, 1, 100}]
    (* Luc Rousseau, Jan 01 2019 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    b(n) = prod(m=1, n, binomial(n, m)); \\ A001142
    a(n) = rad(n!)/rad(b(n)); \\ Michel Marcus, Jan 02 2019

Formula

a(n) = A034386(n) / A056606(n). - Sean A. Irvine, Apr 24 2022

Extensions

Definition and example changed by Luc Rousseau, Jan 02 2019

A329947 Integers k such that the radical of the cumulative product of k^k/k! equals its predecessor.

Original entry on oeis.org

1, 12, 30, 36, 40, 60, 70, 72, 96, 108, 112, 126, 150, 175, 180, 192, 198, 210, 224, 240, 270, 280, 306, 312, 324, 330, 336, 350, 351, 352, 378, 384, 396, 399, 400, 408, 418, 420, 432, 440, 441, 442, 448, 455, 456, 462, 475, 490, 494, 520, 539, 540, 546, 560
Offset: 1

Views

Author

Peter Luschny, Dec 21 2019

Keywords

Comments

No prime numbers appear in this sequence.

Examples

			Consider the rows 11 and 12 of Pascal's triangle.
P11 = [1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1].
P12 = [1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1].
lcm(P11) = 2310 and radical(2310) = 2310.
lcm(P12) = 27720 and radical(27720) = 2310.
Since radical(lcm(P11)) = radical(lcm(P12)) 12 is in this sequence.
Also: 1 is in this sequence because radical(lcm(P0)) = radical(lcm([1])) = radical(1) = 1 = radical(lcm([1, 1])) = radical(lcm(P1)).
		

Crossrefs

Programs

  • Maple
    h := n -> mul(k^k/factorial(k), k=0..n):
    rad := n -> mul(k, k = numtheory[factorset](n)):
    g := proc(n) option remember; rad(h(n)) end:
    isA329947 := n -> g(n) = g(n-1): select(isA329947, [$1..560]);
  • Mathematica
    h[n_] := Product[k^k/k!, {k, 1, n}];
    rad[n_] := Times @@ FactorInteger[n][[All, 1]];
    g[n_] := g[n] = rad[h[n]];
    isA329947[n_] := g[n] == g[n-1];
    Select[Range[560], isA329947] (* Jean-François Alcover, Feb 28 2024, after Maple code *)
Showing 1-6 of 6 results.