cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 57 results. Next

A249151 Largest m such that m! divides the product of elements on row n of Pascal's triangle: a(n) = A055881(A001142(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 7, 12, 6, 4, 1, 16, 2, 18, 4, 6, 10, 22, 11, 4, 12, 2, 6, 28, 25, 30, 1, 10, 16, 6, 36, 36, 18, 12, 40, 40, 6, 42, 10, 23, 22, 46, 19, 6, 4, 16, 12, 52, 2, 10, 35, 18, 28, 58, 47, 60, 30, 63, 1, 12, 10, 66, 16, 22, 49, 70, 41, 72, 36, 4, 18, 10, 12, 78, 80, 2
Offset: 0

Views

Author

Antti Karttunen, Oct 25 2014

Keywords

Comments

A000225 gives the positions of ones.
A006093 seems to give all such k, that a(k) = k.

Examples

			              Binomial coeff.   Their product  Largest k!
                 A007318          A001142(n)   which divides
Row 0                1                    1        1!
Row 1              1   1                  1        1!
Row 2            1   2   1                2        2!
Row 3          1   3   3   1              9        1!
Row 4        1   4   6   4   1           96        4! (96 = 4*24)
Row 5      1   5  10  10   5   1       2500        2! (2500 = 1250*2)
Row 6    1   6  15  20  15   6   1   162000        6! (162000 = 225*720)
		

Crossrefs

One more than A249150.
Cf. A249423 (numbers k such that a(k) = k+1).
Cf. A249429 (numbers k such that a(k) > k).
Cf. A249433 (numbers k such that a(k) < k).
Cf. A249434 (numbers k such that a(k) >= k).
Cf. A249424 (numbers k such that a(k) = (k-1)/2).
Cf. A249428 (and the corresponding values, i.e. numbers n such that A249151(2n+1) = n).
Cf. A249425 (record positions).
Cf. A249427 (record values).

Programs

  • PARI
    A249151(n) = { my(uplim,padicvals,b); uplim = (n+3); padicvals = vector(uplim); for(k=0, n, b = binomial(n, k); for(i=1, uplim, padicvals[i] += valuation(b, prime(i)))); k = 1; while(k>0, for(i=1, uplim, if((padicvals[i] -= valuation(k, prime(i))) < 0, return(k-1))); k++); };
    \\ Alternative implementation:
    A001142(n) = prod(k=1, n, k^((k+k)-1-n));
    A055881(n) = { my(i); i=2; while((0 == (n%i)), n = n/i; i++); return(i-1); }
    A249151(n) = A055881(A001142(n));
    for(n=0, 4096, write("b249151.txt", n, " ", A249151(n)));
    
  • Python
    from itertools import count
    from collections import Counter
    from math import comb
    from sympy import factorint
    def A249151(n):
        p = sum((Counter(factorint(comb(n,i))) for i in range(n+1)),start=Counter())
        for m in count(1):
            f = Counter(factorint(m))
            if not f<=p:
                return m-1
            p -= f # Chai Wah Wu, Aug 19 2025
  • Scheme
    (define (A249151 n) (A055881 (A001142 n)))
    

Formula

a(n) = A055881(A001142(n)).

A187059 The exponent of highest power of 2 dividing the product of the elements of the n-th row of Pascal's triangle (A001142).

Original entry on oeis.org

0, 0, 1, 0, 5, 2, 4, 0, 17, 10, 12, 4, 18, 8, 11, 0, 49, 34, 36, 20, 42, 24, 27, 8, 58, 36, 39, 16, 47, 22, 26, 0, 129, 98, 100, 68, 106, 72, 75, 40, 122, 84, 87, 48, 95, 54, 58, 16, 162, 116, 119, 72, 127, 78, 82, 32, 147, 94, 98, 44, 108, 52, 57, 0, 321, 258, 260, 196, 266, 200, 203, 136, 282, 212, 215, 144, 223, 150, 154, 80, 322, 244, 247, 168, 255, 174, 178, 96, 275, 190, 194, 108, 204, 116, 121, 32, 418, 324, 327, 232, 335
Offset: 0

Views

Author

Bruce Reznick, Mar 05 2011

Keywords

Comments

The exponent of the highest power of 2 which divides Product_{k=0..n} binomial(n, k). This can be computed using de Polignac's formula.
This is the function ord_2(Ḡ_n) extensively studied in Lagarias-Mehta (2014), and plotted in Fig. 1.1. - Antti Karttunen, Oct 22 2014

Examples

			For example, if n = 4, the power of 2 that divides 1*4*6*4*1 is 5.
		

References

  • I. Niven, H. S. Zuckerman, H. L. Montgomery, An Introduction to the Theory of Numbers, Wiley, 1991, pages 182, 183, 187 (Ex. 34).

Crossrefs

Row sums of triangular table A065040.
Row 1 of array A249421.
Cf. A000295 (a(2^k-2)), A000337 (a(2^k)), A005803 (a(2^k-3)), A036799 (a(2^k+1)), A109363 (a(2^k-4)).

Programs

  • Haskell
    a187059 = a007814 . a001142  -- Reinhard Zumkeller, Mar 16 2015
    
  • Mathematica
    a[n_] := Sum[IntegerExponent[Binomial[n, k], 2], {k, 0, n}]; Array[a, 100, 0]
    A187059[n_] := Sum[#*((#+1)*2^k - n - 1) & [Floor[n/2^k]], {k, Floor[Log2[n]]}];
    Array[A187059, 100, 0] (* Paolo Xausa, Feb 11 2025 *)
    2*Accumulate[#] - Range[Length[#]]*# & [DigitCount[Range[0, 99], 2, 1]] (* Paolo Xausa, Feb 11 2025 *)
  • PARI
    a(n)=sum(k=0,n,valuation(binomial(n,k),2))
    
  • PARI
    \\ Much faster version, based on code for A065040 by Charles R Greathouse IV which if reduced even further gives the formula a(n) = 2*A000788(n) - A249154(n):
    A065040(m,k) = (hammingweight(k)+hammingweight(m-k)-hammingweight(m));
    A187059(n) = sum(k=0, n, A065040(n, k));
    for(n=0, 4095, write("b187059.txt", n, " ", A187059(n)));
    \\ Antti Karttunen, Oct 25 2014
    
  • Python
    def A187059(n): return (n+1)*n.bit_count()+sum((m:=1<>j)-(r if n<<1>=m*(r:=k<<1|1) else 0)) for j in range(1,n.bit_length()+1)) # Chai Wah Wu, Nov 11 2024

Formula

a(2^k-1) = 0 (19th century); a(2^k) = (k-1)*2^k+1 for k >= 1. (Use de Polignac.)
a(n) = Sum_{i=0..n} A065040(n,i) [where the entries of triangular table A065040(m,k) give the exponent of the maximal power of 2 dividing binomial coefficient A007318(m,k)].
a(n) = A007814(A001142(n)). - Jason Kimberley, Nov 02 2011
a(n) = A249152(n) - A174605(n). [Exponent of 2 in the n-th hyperfactorial minus exponent of 2 in the n-th superfactorial. Cf. for example Lagarias & Mehta paper or Peter Luschny's formula for A001142.] - Antti Karttunen, Oct 25 2014
a(n) = 2*A000788(n) - A249154(n). - Antti Karttunen, Nov 02 2014
a(n) = Sum_{i=1..n} (2*i-n-1)*v_2(i), where v_2(i) = A007814(i) is the exponent of the highest power of 2 dividing i. - Ridouane Oudra, Jun 02 2022
a(n) = Sum_{k=1..floor(log_2(n))} t*((t+1)*2^k - n - 1), where t = floor(n/(2^k)). - Paolo Xausa, Feb 11 2025, derived from Ridouane Oudra's formula above.

Extensions

Name clarified by Antti Karttunen, Oct 22 2014

A249343 The exponent of the highest power of 3 dividing the product of the elements on the n-th row of Pascal's triangle (A001142(n)).

Original entry on oeis.org

0, 0, 0, 2, 1, 0, 4, 2, 0, 14, 10, 6, 13, 8, 3, 12, 6, 0, 28, 20, 12, 24, 15, 6, 20, 10, 0, 68, 55, 42, 58, 44, 30, 48, 33, 18, 73, 56, 39, 60, 42, 24, 47, 28, 9, 78, 57, 36, 62, 40, 18, 46, 23, 0, 136, 110, 84, 114, 87, 60, 92, 64, 36, 132, 102, 72, 107, 76, 45, 82, 50, 18, 128, 94, 60, 100, 65, 30, 72, 36, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2014

Keywords

Crossrefs

Row sums of A243759.
Row 2 of array A249421.

Programs

  • Haskell
    a249343 = a007949 . a001142  -- Reinhard Zumkeller, Mar 16 2015
  • Mathematica
    A249343[n_] := Sum[#*((#+1)*3^k - n - 1) & [Floor[n/3^k]], {k, Floor[Log[3, n]]}];
    Array[A249343, 100, 0] (* Paolo Xausa, Feb 11 2025 *)
  • PARI
    allocatemem(234567890);
    A249343(n) = sum(k=0, n, valuation(binomial(n, k), 3));
    for(n=0, 6560, write("b249343.txt", n, " ", A249343(n)));
    
  • Scheme
    (define (A249343 n) (add A243759 (A000217 n) (A000096 n)))
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))
    

Formula

a(n) = A007949(A001142(n)).
a(n) = Sum_{k=0..n} A243759(n,k).
a(n) = Sum_{i=1..n} (2*i-n-1)*v_3(i), where v_3(i) = A007949(i) is the exponent of the highest power of 3 dividing i. - Ridouane Oudra, Jun 02 2022
a(n) = Sum_{k=1..floor(log_3(n))} t*((t+1)*3^k - n - 1), where t = floor(n/(3^k)). - Paolo Xausa, Feb 11 2025, derived from Ridouane Oudra's formula above.

A249150 Number of trailing zeros in the factorial base representation of products of binomial coefficients: a(n) = A230403(A001142(n)).

Original entry on oeis.org

0, 0, 1, 0, 3, 1, 5, 0, 1, 3, 9, 6, 11, 5, 3, 0, 15, 1, 17, 3, 5, 9, 21, 10, 3, 11, 1, 5, 27, 24, 29, 0, 9, 15, 5, 35, 35, 17, 11, 39, 39, 5, 41, 9, 22, 21, 45, 18, 5, 3, 15, 11, 51, 1, 9, 34, 17, 27, 57, 46, 59, 29, 62, 0, 11, 9, 65, 15, 21, 48, 69, 40, 71, 35, 3, 17, 9, 11, 77, 79, 1
Offset: 0

Views

Author

Antti Karttunen, Oct 25 2014

Keywords

Comments

a(n) = A249151(n)-1. Please see the comments and graph of that sequence.

Crossrefs

One less than A249151.
Cf. A249423 (values k such that a(k) = k).
Cf. A249425 (record positions).
Cf. A249426 (record values).

Programs

Formula

a(n) = A230403(A001142(n)).

A056077 Indices n of terms of sequence A001142, Product_{k=0..n} binomial(n,k), that are divisible by all primes <= n.

Original entry on oeis.org

1, 2, 4, 6, 10, 11, 12, 16, 18, 22, 23, 28, 29, 30, 35, 36, 39, 40, 42, 44, 46, 47, 52, 55, 58, 59, 60, 62, 66, 69, 70, 71, 72, 78, 79, 82, 83, 88, 89, 95, 96, 100, 102, 104, 106, 107, 108, 111, 112, 119, 125, 126, 130, 131, 134, 136, 138, 139, 143, 148, 149, 150, 153
Offset: 1

Views

Author

Leroy Quet, Jul 26 2000

Keywords

Comments

a(n) + 1 is either a prime or a "mutinous number" (A027854).

Examples

			11 is included because Product_{k=0..11} binomial(11, k) is divisible by 2, 3, 5, 7 and 11.
		

Crossrefs

Programs

  • Maple
    isA056077 := proc(n) local radh; radh := proc(n) option remember;
    mul(k, k = numtheory:-factorset(mul(k^k/factorial(k), k=0..n))) end;
    type(radh(n)/radh(n-1), integer) end: # isA056077(0) = true.
    select(isA056077, [$1..153]); # Peter Luschny, Dec 21 2019
  • Mathematica
    With[{s = Select[Range@ 154, Function[n, (n/Apply[Power, Last@ #]) > #[[-1, 1]] &@ FactorInteger[n]]]}, -1 + Union[s, Prime@ Range@ PrimePi@ Max@ s]] (* Michael De Vlieger, Sep 23 2017 *)

Formula

Let h(m) = Product(PrimeDivisors(Product_{k=0..m} k^k/k!)). If h(m-1) divides h(m) then m is in this sequence. # Peter Luschny, Dec 21 2019

Extensions

Extended by Ray Chandler, Nov 17 2008

A109873 a(n) = product of terms in row n of Pascal's triangle (A001142) divided by n^k, where n^k is the largest power of n dividing it.

Original entry on oeis.org

1, 1, 1, 6, 4, 125, 225, 336140, 2458624, 324060912, 8930250000, 835597712998125, 9001015156742400, 6600661714966989472803, 68987440762943255933340961, 28036608657071518646200652343750, 377177413291384771899817984000000
Offset: 1

Views

Author

Amarnath Murthy, Jul 10 2005

Keywords

Comments

If p is a prime then a(p) = A001142(p)/(p^(p-1)).

Examples

			a(5) = 1*5*10*10*5*1/625= 4.
		

Crossrefs

Programs

  • Maple
    A001142 := proc(n) local k ; mul(k^(2*k-1-n),k=1..n) ; end: A109873 := proc(n) local a; a := A001142(n) ; while a mod n = 0 and a > 1 do a := a/n ; od; RETURN(a) ; end: seq(A109873(n),n=1..20) ; # R. J. Mathar, Aug 15 2007

Extensions

More terms from R. J. Mathar, Aug 15 2007

A109874 Largest exponent e such that n^e that divides A001142(n).

Original entry on oeis.org

1, 2, 2, 4, 4, 6, 5, 7, 8, 10, 9, 12, 11, 12, 12, 16, 14, 18, 16, 18, 20, 22, 19, 22, 24, 22, 23, 28, 26, 30, 25, 30, 32, 30, 36, 36, 36, 36, 40, 40, 36, 42, 40, 39, 44, 46, 40, 45, 44, 46, 48, 52, 45, 50, 49, 54, 56, 58, 54
Offset: 2

Views

Author

Amarnath Murthy, Jul 10 2005

Keywords

Comments

a(n) = n-1, if n is a prime. If n is composite, a(n) >= 2.
Conjectures: (1) If n is even and n = 2^r*m, m odd and >1, then a(n)= n-r-1. (2) If n = 2^r then a(n) = n-3. (3) If n is odd and composite then a(n) = n-2.
a(n) is the highest exponent e such that n^e divides Product_{k=0..n} binomial(n, k). - Joerg Arndt, Jun 04 2022

Crossrefs

Programs

  • Maple
    A001142 := proc(n) local k ; mul(k^(2*k-1-n),k=1..n) ; end: A109874 := proc(n) local a,k; a := A001142(n) ; k := 0 ; while a mod n = 0 and a > 1 do a := a/n ; k := k+1 ; od; RETURN(k) ; end: seq(A109874(n),n=2..60) ; # R. J. Mathar, Aug 15 2007
  • Mathematica
    a[n_] := IntegerExponent[Product[Binomial[n, k], {k, 0, n}], n];
    Table[a[n], {n, 2, 60}] (* Jean-François Alcover, Apr 02 2024 *)
  • PARI
    for(n=2,60,print1(valuation(prod(k=0,n,binomial(n,k)),n),", ")); \\ Joerg Arndt, Jun 04 2022

Extensions

Corrected and extended by R. J. Mathar, Aug 15 2007
Name corrected by Joerg Arndt, Jun 04 2022

A219268 Logarithmic derivative of A001142, where A001142(n) = product{k=1..n} k^k/k!.

Original entry on oeis.org

1, 3, 22, 347, 11986, 956334, 184142134, 87903876147, 105736320973732, 323943204887363938, 2547547949361933790328, 51735228018482706470521574, 2726127372514537039881847535054, 374214400937086673452020875815709240, 134262616041282033840675468757467513112522
Offset: 1

Views

Author

Paul D. Hanna, Nov 16 2012

Keywords

Comments

A001142(n) = hyperfactorial(n)/superfactorial(n) = A002109(n)/A000178(n).

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 22*x^3/3 + 347*x^4/4 + 11986*x^5/5 + 956334*x^6/6 +...
where
exp(L(x)) = 1 + x + 2*x^2 + 9*x^3 + 96*x^4 + 2500*x^5 + 162000*x^6 + 26471025*x^7 + 11014635520*x^8 +...+ A001142(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    nmax=15; Rest[CoefficientList[Series[Log[Sum[Product[j^j/j!,{j,1,k}]*x^k,{k,0,nmax}]],{x,0,nmax}],x] * Range[0,nmax]] (* Vaclav Kotesovec, Jul 10 2015 *)
  • PARI
    {a(n)=n*polcoeff(log(sum(k=0,n+1,prod(j=0,k,j^j/j!)*x^k)+x*O(x^n)),n)}
    for(n=1,21,print1(a(n),", "))

Formula

a(n) ~ A^2 * exp(n^2/2 + n - 1/12) / (n^(n/2 - 2/3) * (2*Pi)^((n+1)/2)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015

A056609 a(n) = rad(n!)/rad(A001142(n)) where rad(n) is the squarefree kernel of n, A007947(n).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 3, 5, 1, 1, 1, 7, 5, 2, 1, 3, 1, 5, 7, 11, 1, 1, 5, 13, 3, 7, 1, 1, 1, 2, 11, 17, 7, 1, 1, 19, 13, 1, 1, 7, 1, 11, 1, 23, 1, 1, 7, 5, 17, 13, 1, 3, 11, 1, 19, 29, 1, 1, 1, 31, 1, 2, 13, 11, 1, 17, 23, 1, 1, 1, 1, 37, 5, 19, 11, 13, 1, 1, 3, 41, 1, 1, 17, 43, 29, 11, 1, 1, 13
Offset: 1

Views

Author

Labos Elemer, Aug 07 2000

Keywords

Comments

The previous name, which does not match the data as observed by Luc Rousseau, was: Quotient of squarefree kernels of A002944(n) and A001405.
a(n) is the unique prime p not greater than n missing in the prime factorization of A001142(n), if such a prime exists; a(n) is 1 otherwise. - Luc Rousseau, Jan 01 2019

Examples

			From _Luc Rousseau_, Jan 02 2019: (Start)
In Pascal's triangle,
- row n=3 (1 3 3 1) contains no number with prime factor 2, so a(3) = 2;
- row n=4 (1 4 6 4 1) contains, for all p prime <= 4, a multiple of p, so a(4) = 1;
- row n=5 (1 5 10 10 5 1) contains no number with prime factor 3, so a(5) = 3;
etc.
(End)
		

Crossrefs

Programs

  • Mathematica
    L[n_] := Table[Binomial[n, k], {k, 1, Floor[n/2]}]
    c[n_] := Complement[Prime /@ Range[PrimePi[n]], First /@ FactorInteger[Times @@ L[n]]]
    a[n_] := Module[{x = c[n]}, If[x == {}, 1, First[x]]]
    Table[a[n], {n, 1, 100}]
    (* Luc Rousseau, Jan 01 2019 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    b(n) = prod(m=1, n, binomial(n, m)); \\ A001142
    a(n) = rad(n!)/rad(b(n)); \\ Michel Marcus, Jan 02 2019

Formula

a(n) = A034386(n) / A056606(n). - Sean A. Irvine, Apr 24 2022

Extensions

Definition and example changed by Luc Rousseau, Jan 02 2019

A092593 a(n) is the smallest number k > 1 for which A001142(k)/A002944(k+1)^n is an integer.

Original entry on oeis.org

2, 3, 9, 9, 15, 15, 38, 45, 45, 45, 61, 61, 225, 225, 225, 225, 225, 225, 225, 225, 225, 225, 635, 635, 1545, 1545, 1545, 1545, 2137, 2137, 2137, 2137, 2137, 2137, 2137, 2137, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660
Offset: 1

Views

Author

Labos Elemer, Mar 10 2004

Keywords

Comments

a(62) > 12500. - Robert Israel, Jan 24 2019

Examples

			n=4, A001142(9) = 1*9*36*...*9*1 = 11759522374656,
A002944(10) = lcm(1,2,...,10)/10=252 and A001142(9) = 2916*(252^4) = 11759522374656,
so a(4)=9, the smallest relevant number.
		

Crossrefs

Programs

  • Maple
    A001142:= proc(n) option remember; procname(n-1)*n^(n-1)/(n-1)! end proc:
    A001142(0):= 1:
    A002944:= proc(n) option remember; ilcm(n,procname(n-1)*(n-1))/n end proc:
    A002944(1):= 1:
    f:= proc(n) option remember; local k;
    for k from procname(n-1) do
       if type(A001142(k)/A002944(k+1)^n, integer) then return k fi
    od
    end proc:
    f(1):= 2:
    map(f, [$1..61]); # Robert Israel, Jan 23 2019
  • Mathematica
    Table[fla=1;Do[s1=Apply[Times, Table[Binomial[n, j], {j, 0, n}]]; s2=Apply[LCM, Table[Binomial[n, j], {j, 0, n}]]; If[IntegerQ[s1/(s2^k)]&&!Equal[n, 1]&&Equal[fla, 1], Print[{n, k}];fla=0], {n, 1, 230}], {k, 1, 25}]

Extensions

Corrected and extended by Robert Israel, Jan 23 2019
Showing 1-10 of 57 results. Next