cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A001142 a(n) = Product_{k=1..n} k^(2k - 1 - n).

Original entry on oeis.org

1, 1, 2, 9, 96, 2500, 162000, 26471025, 11014635520, 11759522374656, 32406091200000000, 231627686043080250000, 4311500661703860387840000, 209706417310526095716965894400, 26729809777664965932590782608648192
Offset: 0

Views

Author

Keywords

Comments

Absolute value of determinant of triangular matrix containing binomial coefficients.
These are also the products of consecutive horizontal rows of the Pascal triangle. - Jeremy Hehn (ROBO_HEN5000(AT)rose.net), Mar 29 2007
Limit_{n->oo} a(n)*a(n+2)/a(n+1)^2 = e, as follows from lim_{n->oo} (1 + 1/n)^n = e. - Harlan J. Brothers, Nov 26 2009
A000225 gives the positions of odd terms. - Antti Karttunen, Nov 02 2014
Product of all unreduced fractions h/k with 1 <= k <= h <= n. - Jonathan Sondow, Aug 06 2015
a(n) is a product of the binomial coefficients from the n-th row of the Pascal triangle, for n= 0, 1, 2, ... For n > 0, a(n) means the number of all maximum chains in the poset formed by the n-dimensional Boolean cube {0,1}^n and the relation "precedes by weight". This relation is defined over {0,1}^n as follows: for arbitrary vectors u, v of {0,1}^n we say that "u precedes by weight v" if wt(u) < wt(v) or if u = v, where wt(u) denotes the (Hamming) weight of u. For more details, see the sequence A051459. - Valentin Bakoev, May 17 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. also A004788, A056606 (squarefree kernel), A256113.

Programs

  • GAP
    List([0..15], n-> Product([0..n], k-> Binomial(n,k) )); # G. C. Greubel, May 23 2019
    
  • Haskell
    a001142 = product . a007318_row -- Reinhard Zumkeller, Mar 16 2015
    
  • Magma
    [(&*[Binomial(n,k): k in [0..n]]): n in [0..15]]; // G. C. Greubel, May 23 2019
    
  • Maple
    a:=n->mul(binomial(n,k), k=0..n): seq(a(n), n=0..14); # Zerinvary Lajos, Jan 22 2008
  • Mathematica
    Table[Product[k^(2*k - 1 - n), {k, n}], {n, 0, 20}] (* Harlan J. Brothers, Nov 26 2009 *)
    Table[Hyperfactorial[n]/BarnesG[n+2], {n, 0, 20}] (* Peter Luschny, Nov 29 2015 *)
    Table[Product[(n - k + 1)^(n - 2 k + 1), {k, 1, n}], {n, 0, 20}] (* Harlan J. Brothers, Aug 26 2023 *)
  • Maxima
    a(n):= prod(binomial(n,k),k,0,n); n : 15; for i from 0 thru n do print (a(i)); /* Valentin Bakoev, May 17 2019 */
    
  • PARI
    for(n=0,16,print(prod(m=1,n,binomial(n,m))))
    
  • PARI
    A001142(n) = prod(k=1, n, k^((k+k)-1-n)); \\ Antti Karttunen, Nov 02 2014
    
  • Python
    from math import factorial, prod
    from fractions import Fraction
    def A001142(n): return prod(Fraction((k+1)**k,factorial(k)) for k in range(1,n)) # Chai Wah Wu, Jul 15 2022
  • Sage
    a = lambda n: prod(k^k/factorial(k) for k in (1..n))
    [a(n) for n in range(20)] # Peter Luschny, Nov 29 2015
    
  • Scheme
    (define (A001142 n) (mul (lambda (k) (expt k (+ k k -1 (- n)))) 1 n))
    (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))
    ;; Antti Karttunen, Oct 28 2014
    

Formula

a(n) = C(n, 0)*C(n, 1)* ... *C(n, n).
From Harlan J. Brothers, Nov 26 2009: (Start)
a(n) = Product_{j=1..n-2} Product_{k=1..j} (1+1/k)^k, n >= 3.
a(1) = a(2) = 1, a(n) = a(n-1) * Product_{k=1..n-2} (1+1/k)^k. (End)
a(n) = hyperfactorial(n)/superfactorial(n) = A002109(n)/A000178(n). - Peter Luschny, Jun 24 2012
a(n) ~ A^2 * exp(n^2/2 + n - 1/12) / (n^(n/2 + 1/3) * (2*Pi)^((n+1)/2)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015
a(n) = Product_{i=1..n} Product_{j=1..i} (i/j). - Pedro Caceres, Apr 06 2019
a(n) = Product_{k=1..n} (n - k + 1)^(n - 2*k + 1). - Harlan J. Brothers, Aug 26 2023

Extensions

More terms from James Sellers, May 01 2000
Better description from Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001

A249151 Largest m such that m! divides the product of elements on row n of Pascal's triangle: a(n) = A055881(A001142(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 7, 12, 6, 4, 1, 16, 2, 18, 4, 6, 10, 22, 11, 4, 12, 2, 6, 28, 25, 30, 1, 10, 16, 6, 36, 36, 18, 12, 40, 40, 6, 42, 10, 23, 22, 46, 19, 6, 4, 16, 12, 52, 2, 10, 35, 18, 28, 58, 47, 60, 30, 63, 1, 12, 10, 66, 16, 22, 49, 70, 41, 72, 36, 4, 18, 10, 12, 78, 80, 2
Offset: 0

Views

Author

Antti Karttunen, Oct 25 2014

Keywords

Comments

A000225 gives the positions of ones.
A006093 seems to give all such k, that a(k) = k.

Examples

			              Binomial coeff.   Their product  Largest k!
                 A007318          A001142(n)   which divides
Row 0                1                    1        1!
Row 1              1   1                  1        1!
Row 2            1   2   1                2        2!
Row 3          1   3   3   1              9        1!
Row 4        1   4   6   4   1           96        4! (96 = 4*24)
Row 5      1   5  10  10   5   1       2500        2! (2500 = 1250*2)
Row 6    1   6  15  20  15   6   1   162000        6! (162000 = 225*720)
		

Crossrefs

One more than A249150.
Cf. A249423 (numbers k such that a(k) = k+1).
Cf. A249429 (numbers k such that a(k) > k).
Cf. A249433 (numbers k such that a(k) < k).
Cf. A249434 (numbers k such that a(k) >= k).
Cf. A249424 (numbers k such that a(k) = (k-1)/2).
Cf. A249428 (and the corresponding values, i.e. numbers n such that A249151(2n+1) = n).
Cf. A249425 (record positions).
Cf. A249427 (record values).

Programs

  • PARI
    A249151(n) = { my(uplim,padicvals,b); uplim = (n+3); padicvals = vector(uplim); for(k=0, n, b = binomial(n, k); for(i=1, uplim, padicvals[i] += valuation(b, prime(i)))); k = 1; while(k>0, for(i=1, uplim, if((padicvals[i] -= valuation(k, prime(i))) < 0, return(k-1))); k++); };
    \\ Alternative implementation:
    A001142(n) = prod(k=1, n, k^((k+k)-1-n));
    A055881(n) = { my(i); i=2; while((0 == (n%i)), n = n/i; i++); return(i-1); }
    A249151(n) = A055881(A001142(n));
    for(n=0, 4096, write("b249151.txt", n, " ", A249151(n)));
    
  • Python
    from itertools import count
    from collections import Counter
    from math import comb
    from sympy import factorint
    def A249151(n):
        p = sum((Counter(factorint(comb(n,i))) for i in range(n+1)),start=Counter())
        for m in count(1):
            f = Counter(factorint(m))
            if not f<=p:
                return m-1
            p -= f # Chai Wah Wu, Aug 19 2025
  • Scheme
    (define (A249151 n) (A055881 (A001142 n)))
    

Formula

a(n) = A055881(A001142(n)).

A249421 A(n,k) = exponent of the largest power of n-th prime which divides the product of the elements on row (k-1) of Pascal's triangle; a square array read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 5, 2, 0, 0, 0, 2, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 17, 2, 3, 0, 0, 0, 0, 0, 0, 10, 0, 2, 0, 0, 0, 0, 0, 0, 0, 12, 14, 1, 6, 0, 0, 0, 0, 0, 0, 0, 4, 10, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 18, 6, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 13, 6, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 8, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Oct 28 2014

Keywords

Comments

Square array A(n,k), where n = row, k = column, read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ....
A(n,k) is A000040(n)-adic valuation of A001142(k-1).

Examples

			The top left corner of the array:
0, 0, 1, 0, 5, 2, 4, 0, 17, 10, 12,  4, 18,  8, 11,  0, 49, 34, 36, 20, 42,
0, 0, 0, 2, 1, 0, 4, 2,  0, 14, 10,  6, 13,  8,  3, 12,  6,  0, 28, 20, 12,
0, 0, 0, 0, 0, 4, 3, 2,  1,  0,  8,  6,  4,  2,  0, 12,  9,  6,  3,  0, 16,
0, 0, 0, 0, 0, 0, 0, 6,  5,  4,  3,  2,  1,  0, 12, 10,  8,  6,  4,  2,  0,
0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0, 10,  9,  8,  7,  6,  5,  4,  3,  2,  1,
0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  0,  0, 12, 11, 10,  9,  8,  7,  6,  5,
0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 16, 15, 14, 13,
0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 18, 17,
...
		

Crossrefs

Transpose: A249422.
Row 1: A187059, Row 2: A249343, Row 3: A249345, Row 4 A249347. (Cf. also A249346).

Programs

Formula

A(n, k) = A249344(n, A001142(k-1)).

A249343 The exponent of the highest power of 3 dividing the product of the elements on the n-th row of Pascal's triangle (A001142(n)).

Original entry on oeis.org

0, 0, 0, 2, 1, 0, 4, 2, 0, 14, 10, 6, 13, 8, 3, 12, 6, 0, 28, 20, 12, 24, 15, 6, 20, 10, 0, 68, 55, 42, 58, 44, 30, 48, 33, 18, 73, 56, 39, 60, 42, 24, 47, 28, 9, 78, 57, 36, 62, 40, 18, 46, 23, 0, 136, 110, 84, 114, 87, 60, 92, 64, 36, 132, 102, 72, 107, 76, 45, 82, 50, 18, 128, 94, 60, 100, 65, 30, 72, 36, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2014

Keywords

Crossrefs

Row sums of A243759.
Row 2 of array A249421.

Programs

  • Haskell
    a249343 = a007949 . a001142  -- Reinhard Zumkeller, Mar 16 2015
  • Mathematica
    A249343[n_] := Sum[#*((#+1)*3^k - n - 1) & [Floor[n/3^k]], {k, Floor[Log[3, n]]}];
    Array[A249343, 100, 0] (* Paolo Xausa, Feb 11 2025 *)
  • PARI
    allocatemem(234567890);
    A249343(n) = sum(k=0, n, valuation(binomial(n, k), 3));
    for(n=0, 6560, write("b249343.txt", n, " ", A249343(n)));
    
  • Scheme
    (define (A249343 n) (add A243759 (A000217 n) (A000096 n)))
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))
    

Formula

a(n) = A007949(A001142(n)).
a(n) = Sum_{k=0..n} A243759(n,k).
a(n) = Sum_{i=1..n} (2*i-n-1)*v_3(i), where v_3(i) = A007949(i) is the exponent of the highest power of 3 dividing i. - Ridouane Oudra, Jun 02 2022
a(n) = Sum_{k=1..floor(log_3(n))} t*((t+1)*3^k - n - 1), where t = floor(n/(3^k)). - Paolo Xausa, Feb 11 2025, derived from Ridouane Oudra's formula above.

A065040 Triangle read by rows: T(m,k) = exponent of the highest power of 2 dividing the binomial coefficient binomial(m,k).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 3, 1, 3, 2, 3, 0, 0, 0, 2, 2, 1, 1, 2, 2, 0, 0, 0, 1, 0, 3, 1, 2, 1, 3, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 2, 0, 3, 2, 3, 0, 2, 1, 2, 0, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0
Offset: 0

Views

Author

Claude Lenormand (hlne.lenormand(AT)voono.net), Nov 05 2001

Keywords

Comments

T(m,k) is the number of 'carries' that occur when adding k and m-k in base 2 using the traditional addition algorithm. - Tom Edgar, Jun 10 2014

Examples

			Triangle begins:
[0]
[0, 0]
[0, 1, 0]
[0, 0, 0, 0]
[0, 2, 1, 2, 0]
[0, 0, 1, 1, 0, 0]
[0, 1, 0, 2, 0, 1, 0]
[0, 0, 0, 0, 0, 0, 0, 0]
[0, 3, 2, 3, 1, 3, 2, 3, 0]
[0, 0, 2, 2, 1, 1, 2, 2, 0, 0]
[0, 1, 0, 3, 1, 2, 1, 3, 0, 1, 0]
... - _N. J. A. Sloane_, Aug 21 2021
		

Crossrefs

Programs

  • Maple
    A065040 := (n, k) -> padic[ordp](binomial(n, k), 2):
    seq(seq(A065040(n,k), k=0..n), n=0..13); # Peter Luschny, Aug 15 2017
  • Mathematica
    T[m_, k_] := IntegerExponent[Binomial[m, k], 2]; Table[T[m, k], {m, 0, 13}, {k, 0, m}] // Flatten (* Jean-François Alcover, Oct 06 2016 *)
  • PARI
    T(m,k)=hammingweight(k)+hammingweight(m-k)-hammingweight(m)
    for(m=0,9,for(k=0,m,print1(T(m,k)", "))) \\ Charles R Greathouse IV, Mar 26 2013

Formula

As an array f(i,j) = f(j,i) = T(i+j,j) read by antidiagonals: f(0,j) = 0, f(1,j) = A007814(j+1), f(i,j) = Sum_{k=0..i-1} (f(1,j+k) - f(1,k)). [corrected by Kevin Ryde, Oct 07 2021]
The n-th term a(n) is equal to the binomial coefficient binomial(m,k), where m = floor((1+sqrt(8*n+1))/2) - 1 and k = n - m(m+1)/2. Also a(n) = g(m) - g(k) - g(m-k), where g(x) = Sum_{i=1..floor(log_2(x))} floor(x/2^i), m = floor((1+sqrt(8*n+1))/2) - 1, k = n - m(m+1)/2. - Hieronymus Fischer, May 05 2007
T(m,k) <= log_2 m, for m > 0. - Charles R Greathouse IV, Mar 26 2013
T(m,k) = log_2(A082907(m,k)). - Tom Edgar, Jun 10 2014
From Antti Karttunen, Oct 28 2014: (Start)
a(n) = A007814(A007318(n)).
a(n) * A047999(n) = 0 and a(n) + A047999(n) > 0 for all n.
(End)

Extensions

Name clarified by Antti Karttunen, Oct 28 2014

A249150 Number of trailing zeros in the factorial base representation of products of binomial coefficients: a(n) = A230403(A001142(n)).

Original entry on oeis.org

0, 0, 1, 0, 3, 1, 5, 0, 1, 3, 9, 6, 11, 5, 3, 0, 15, 1, 17, 3, 5, 9, 21, 10, 3, 11, 1, 5, 27, 24, 29, 0, 9, 15, 5, 35, 35, 17, 11, 39, 39, 5, 41, 9, 22, 21, 45, 18, 5, 3, 15, 11, 51, 1, 9, 34, 17, 27, 57, 46, 59, 29, 62, 0, 11, 9, 65, 15, 21, 48, 69, 40, 71, 35, 3, 17, 9, 11, 77, 79, 1
Offset: 0

Views

Author

Antti Karttunen, Oct 25 2014

Keywords

Comments

a(n) = A249151(n)-1. Please see the comments and graph of that sequence.

Crossrefs

One less than A249151.
Cf. A249423 (values k such that a(k) = k).
Cf. A249425 (record positions).
Cf. A249426 (record values).

Programs

Formula

a(n) = A230403(A001142(n)).

A174605 Partial sums of A011371.

Original entry on oeis.org

0, 0, 1, 2, 5, 8, 12, 16, 23, 30, 38, 46, 56, 66, 77, 88, 103, 118, 134, 150, 168, 186, 205, 224, 246, 268, 291, 314, 339, 364, 390, 416, 447, 478, 510, 542, 576, 610, 645, 680, 718, 756, 795, 834, 875, 916, 958, 1000, 1046, 1092, 1139, 1186, 1235, 1284, 1334
Offset: 0

Views

Author

Jonathan Vos Post, Mar 23 2010

Keywords

Comments

Exponent of 2 in the superfactorials, i.e., a(n) = A007814(A000178(n)). - Ralf Stephan, Jan 03 2014

Crossrefs

Cf. A000120, A011371 (first differences).
Cf. A000178 (superfactorials), A007814 (2-adic valuation), A272011 (binary exponents).
Cf. A249152 (hyperfactorial valuation), A187059 (binomial valuation), A173345 (superfactorial 10-valuation).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 0,
          a(n-1)+n-add(i, i=Bits[Split](n)))
        end:
    seq(a(n), n=0..54);  # Alois P. Heinz, Oct 30 2021
  • Mathematica
    Accumulate[Table[n-DigitCount[n,2,1],{n,0,130}]] (* Harvey P. Dale, Feb 26 2015 *)
    a[n_] := IntegerExponent[BarnesG[n + 2], 2]; Array[a, 100, 0] (* Amiram Eldar, Aug 08 2024 *)
  • PARI
    a(n) = n++; my(v=binary(n),t=#v-1); for(i=1,#v, if(v[i],v[i]=t++,t--)); (n^2 - fromdigits(v,2))>>1; \\ Kevin Ryde, Oct 29 2021
    
  • Python
    def A174605(n): return (n*(n+1)>>1)-(n+1)*n.bit_count()-(sum((m:=1<>j)-(r if n<<1>=m*(r:=k<<1|1) else 0)) for j in range(1,n.bit_length()+1))>>1)  # Chai Wah Wu, Nov 12 2024

Formula

a(n) = Sum_{i=0..n} A011371(i).
From Kevin Ryde, Oct 29 2021: (Start)
a(n) = n*(n+1)/2 - A000788(n).
a(n) ~ (n^2)/2 + O(n*log_2(n)). [Lagarias and Mehta, theorem 4.2 with p=2]
a(n) = ( (n+1)^2 - Sum_{i=1..k} (e[i]+2*i-1) * 2^e[i] )/2, where binary expansion n+1 = 2^e[1] + ... + 2^e[k] with descending exponents e[1] > e[2] > ... > e[k] (A272011).
(End)

A249152 Exponent of 2 in the hyperfactorials: a(n) = A007814(A002109(n)).

Original entry on oeis.org

0, 0, 2, 2, 10, 10, 16, 16, 40, 40, 50, 50, 74, 74, 88, 88, 152, 152, 170, 170, 210, 210, 232, 232, 304, 304, 330, 330, 386, 386, 416, 416, 576, 576, 610, 610, 682, 682, 720, 720, 840, 840, 882, 882, 970, 970, 1016, 1016, 1208, 1208, 1258, 1258, 1362, 1362, 1416, 1416, 1584, 1584, 1642, 1642
Offset: 0

Views

Author

Antti Karttunen, Oct 25 2014

Keywords

Comments

This is the function ord_2(D*_n) listed in the leftmost column of Table 7.1 in Lagarias & Mehta 2014 paper (on page 19).

Crossrefs

Bisection: A249153.
Cf. A133457 (binary exponents).

Programs

  • Magma
    [0] cat [&+[i*Valuation(i, 2):i in [1..n]]:n in [1..60]]; // Marius A. Burtea, Oct 18 2019
    
  • Maple
    with(padic): seq(add(i*ordp(i, 2), i=1..n), n=0..60); # Ridouane Oudra, Oct 17 2019
  • Mathematica
    Table[i=0;Hyperfactorial@n//.x_/;EvenQ@x:>(i++;x/2);i,{n,0,60}] (* Giorgos Kalogeropoulos, Oct 28 2021 *)
  • PARI
    a(n) = sum(i=1, n, i*valuation(i, 2)); \\ Michel Marcus, Sep 14 2021
    
  • PARI
    a(n) = my(v=binary(n),t=0); forstep(j=#v,1,-1, if(v[j],v[j]=t--,t++)); (n^2 + fromdigits(v,2))>>1; \\ Kevin Ryde, Nov 03 2021
    
  • Python
    def A249152(n): return sum(i*(~i&i-1).bit_length() for i in range(2,n+1,2)) # Chai Wah Wu, Jul 11 2022

Formula

a(n) = 2 * A143157(floor(n/2)).
a(n) = A174605(n) + A187059(n). [Lagarias and Mehta theorem 4.1 for p=2]
a(n) = Sum_{i=1..n} i*v_2(i), where v_2(i) = A007814(i) is the exponent of the highest power of 2 dividing i. - Ridouane Oudra, Oct 17 2019
a(n) ~ (n^2+2n)/2 as n -> infinity. - Luca Onnis, Oct 17 2021
a(n) ~ ((A011371(n))^2)/2 as n -> infinity. - Luca Onnis, Nov 02 2021
From Kevin Ryde, Nov 03 2021: (Start)
a(2n) = a(2n+1) = 2*a(n) + n*(n+1).
a(n) = ( n^2 + Sum_{j=1..k} (e[j]-2*j+1) * 2^e[j] )/2, where binary expansion n = 2^e[1] + ... + 2^e[k] with ascending exponents e[1] < e[2] < ... < e[k] (A133457).
(End)
a(n) = Sum_{j=1..floor(log_2(n))} j*2^j*round(n/2^(j+1))^2, for n>=1. - Ridouane Oudra, Oct 01 2022

A249345 The exponent of the highest power of 5 dividing the product of the elements on the n-th row of Pascal's triangle.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 3, 2, 1, 0, 8, 6, 4, 2, 0, 12, 9, 6, 3, 0, 16, 12, 8, 4, 0, 44, 38, 32, 26, 20, 43, 36, 29, 22, 15, 42, 34, 26, 18, 10, 41, 32, 23, 14, 5, 40, 30, 20, 10, 0, 88, 76, 64, 52, 40, 82, 69, 56, 43, 30, 76, 62, 48, 34, 20, 70, 55, 40, 25, 10, 64, 48, 32, 16, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2014

Keywords

Crossrefs

Programs

  • Mathematica
    A249345[n_] := Sum[#*((#+1)*5^k - n - 1) & [Floor[n/5^k]], {k, Floor[Log[5, n]]}];
    Array[A249345, 100, 0] (* Paolo Xausa, Feb 11 2025 *)
  • PARI
    allocatemem(234567890);
    A249345(n) = sum(k=0, n, valuation(binomial(n, k), 5));
    for(n=0, 3124, write("b249345.txt", n, " ", A249345(n)));
    
  • Scheme
    (define (A249345 n) (A112765 (A001142 n)))
    
  • Scheme
    (define (A249345 n) (add (lambda (n) (A112765 (A007318 n))) (A000217 n) (A000096 n)))
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))

Formula

a(n) = A112765(A001142(n)).
a(n) = Sum_{k=0..n} A112765(binomial(n,k)).
a(n) = Sum_{i=1..n} (2*i-n-1)*v_5(i), where v_5(i) = A112765(i) is the exponent of the highest power of 5 dividing i. - Ridouane Oudra, Jun 02 2022
a(n) = Sum_{k=1..floor(log_5(n))} t*((t+1)*5^k - n - 1), where t = floor(n/(5^k)). - Paolo Xausa, Feb 11 2025, derived from Ridouane Oudra's formula above.

A249347 The exponent of the highest power of 7 dividing the product of the elements on the n-th row of Pascal's triangle.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 12, 10, 8, 6, 4, 2, 0, 18, 15, 12, 9, 6, 3, 0, 24, 20, 16, 12, 8, 4, 0, 30, 25, 20, 15, 10, 5, 0, 36, 30, 24, 18, 12, 6, 0, 90, 82, 74, 66, 58, 50, 42, 89, 80, 71, 62, 53, 44, 35, 88, 78, 68, 58, 48, 38, 28, 87, 76, 65, 54, 43, 32, 21, 86, 74, 62, 50, 38, 26, 14, 85, 72, 59, 46, 33, 20, 7, 84, 70, 56, 42, 28, 14, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2014

Keywords

Crossrefs

Programs

  • Mathematica
    A249347[n_] := Sum[#*((#+1)*7^k - n - 1) & [Floor[n/7^k]], {k, Floor[Log[7, n]]}];
    Array[A249347, 100, 0] (* Paolo Xausa, Feb 08 2025 *)
  • PARI
    allocatemem(234567890);
    A249347(n) = sum(k=0, n, valuation(binomial(n, k), 7));
    for(n=0, 2400, write("b249347.txt", n, " ", A249347(n)));
    
  • Scheme
    (define (A249347 n) (A214411 (A001142 n)))
    
  • Scheme
    (define (A249347 n) (add (lambda (n) (A214411 (A007318 n))) (A000217 n) (A000096 n)))
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))

Formula

a(n) = A214411(A001142(n)).
a(n) = Sum_{k=0..n} A214411(binomial(n,k)).
a(n) = Sum_{i=1..n} (2*i-n-1)*v_7(i), where v_7(i) = A214411(i) is the exponent of the highest power of 7 dividing i. - Ridouane Oudra, Jun 03 2022
a(n) = Sum_{k=1..floor(log_7(n))} t*((t+1)*7^k - n - 1), where t = floor(n/(7^k)). - Paolo Xausa, Feb 09 2025, derived from Ridouane Oudra's formula above.
Showing 1-10 of 13 results. Next